

Artificial Intelligence and Logistics

IJCAI 2011 Workshop Proceedings

Kerstin Schill, Bernd Scholz-Reiter, Lutz Frommberger (Eds.)

SFB/TR 8 Report No. 028-07/2011
Report Series of the Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition
Universität Bremen / Universität Freiburg

Contact Address:

Dr. Thomas Barkowsky
SFB/TR 8
Universität Bremen
P.O.Box 330 440
28334 Bremen, Germany

Tel +49-421-218-64233
Fax +49-421-218-64239
barkowsky@sfbtr8.uni-bremen.de
www.sfbtr8.uni-bremen.de

© 2011 SFB/TR 8 Spatial Cognition

PROCEEDINGS

2ND WORKSHOP ON

ARTIFICIAL INTELLIGENCE AND LOGISTICS
(AILOG-2011)

Kerstin Schill, Bernd Scholz-Reiter, Lutz Frommberger (eds.)

July 16, 2011

22nd International Joint Conference on Artificial Intelligence (IJCAI)

Barcelona, Spain

	 	 	 	 	 SFB	 	 637

Autonomous	 Logistics

2ND WORKSHOP ON ARTIFICIAL INTELLIGENCE AND LOGISTICS

(AILOG-2011)

ORGANIZERS

Kerstin Schill
SFB/TR 8 “Spatial Cognition”, University of Bremen, Germany
kschill@sfbtr8.uni-bremen.de

Bernd Scholz-Reiter
SFB 637 “Autonomous Cooperating Logistic Processes”, University of Bremen, Germany
bsr@biba.uni-bremen.de

Lutz Frommberger
SFB/TR 8 “Spatial Cognition”, University of Bremen, Germany
lutz@informatik.uni-bremen.de

PROGRAM COMMITTEE

Ana Bazzan (Universidade Federal do Rio Grande do Sul, Brazil)
John Bateman (University of Bremen, Germany)
Jürgen Branke (University of Warwick, UK)
Neil A. Duffie (University of Wisconsin-Madison, USA)
Boi Faltings (EPFL Lausanne, Switzerland)
Torsten Hildebrandt (University of Bremen, Germany)
Eyke Hüllermeier (University of Marburg, Germany)
Kap Hwan Kim (Pusan National University, Korea)
Stefan Kirn (University of Hohenheim, Germany)
Herbert Kopfer (University of Bremen, Germany)
Andreas D. Lattner (University of Frankfurt, Germany)
Martin Lauer (Karlsruhe Institute of Technology, Germany)
Ramon López de Màntaras (IIIA-CSIC, Spain)
Jacek Malec (Lund University, Sweden)
Norman Sadeh (Carnegie Mellon University, USA)
Hedda Schmidtke (Karlsruhe Institute of Technology, Germany)
Jaime Sichman (Universidade de So Paulo, Brazil)
Gerhard Weiss (Maastricht University, Netherlands)
Katja Windt (Jacobs University Bremen, Germany)
Stefan Wölfl (University of Freiburg, Germany)

ORGANIZING INSTITUTIONS

SFB/TR 8 “Spatial Cognition”
University of Bremen and University of Freiburg, Germany
http://www.sfbtr8.spatial-cognition.de

SFB 637 “Autonomous Cooperating Logistic Processes”
University of Bremen, Germany
http://www.sfb637.uni-bremen.de

iii

TABLE OF CONTENTS

Preface: Artificial Intelligence and Logistics . 1
Kerstin Schill, Bernd Scholz-Reiter, Lutz Frommberger

Invited Talk: Organic Traffic Control (Abstract) . 3
Jürgen Branke

TECHNICAL PAPERS

Challenges in Maintaining Minimal, Decomposable Disjunctive Temporal
Problems . 7

James Boerkoel, Ed Durfee

Timeline-based Planning System for Manufacturing Applications 13
Minh Do, Serdar Uckun

Supply Network Coordination by Vendor Managed Inventory – A Mechanism
Design Approach . 19

Péter Egri, Jozsef Váncza

Multi-Agent Based Collaborative Demand and Capacity Network Planning in
Heterarchical Supply Chains . 25

Bernd Hellingrath, Peer Küppers

ARMO: Adaptive Road Map Optimization for Large Robot Teams 31
Alexander Kleiner, Dali Sun, Daniel Meyer-Delius

HCOP : Modeling Distributed Constraint Optimization Problems with
Holonic Agents . 37

Fernando J. M. Marcellino, Jaime Sichman

Flexible routing combing Constraint Programming, Large Neighbourhood
Search, and Feature-based Insertion . 43

Philip Kilby, Andrew Verden

Optimising Efficiency in Part-Load Transportation . 49
Srinivasa Ragavan Devanatthan, Stefan Glaser, Klaus Dorer

Workflow Resource Allocation through Auctions . 55
Albert Pla, Beatriz López, Javier Murillo

Stochastic programming as a tool for emergency logistics in natural floods 61
Patricio Lamas, Rodrigo A. Garrido

Re-organization in Warehouse Management Systems . 67
Huib Aldewereld, Frank Dignum, Marcel Hiel

v

PREFACE

Global economy seems to have overcome the depression of the financial
crisis in 2009. Markets are growing again, causing an increase in global material
flows. Gaining and maintaining competitive advantages in such an environment
is only possible if systems and processes to handle these material and associated
information flows are properly designed and can fully utilize available, scarce
resources.

Within this development, methods of Artificial Intelligence gain importance
and can offer Logistics researchers new ways to face the problems of today’s
logistic systems. Vice versa, logistics provides a challenging area to apply and
improve AI research. Engineering and operating such highly dynamic and com-
plex systems should be a joint research effort for both, the Artificial Intelligence
community and Logistics research.

From the increasing complexity of modern logistic processes emerges a
great variety of AI methods employed. For example, ontologies are used to con-
ceptualize complex systems in a formal way. Unforeseen circumstances require
adaptive solutions. Neural networks and genetic algorithms are frequently used,
and machine learning techniques of all flavors lead to flexible approaches tai-
lored to specific demands. As processes become more and more distributed,
especially multi-agent concepts become increasingly important. Questions of
coordination and cooperation have to be tackled, also leading to new develop-
ments in formal approaches such as distributed planning, distributed constraint
optimization problems, or qualitative spatial reasoning. Increasingly, the domain
of mobile robotics becomes evident, and concepts developed for autonomous
robots can also be applied successfully to many tasks in Logistics.

The AILog workshops aim at aggregating this variety of methods and appli-
cations. Being located at the major international AI conferences, we hope for an
intense contact between experts in Logistics and experts in AI in order to trigger
mutual exchange of ideas, formalisms, algorithms, and applications. While this
has been successfully achieved with the 2010 AILog workshop, we hope for
interesting and fruitful discussions from this year’s workshop as well. From the
submitted manuscripts we selected 11 papers for presentation at the workshop
after a thorough peer-review process.

We want to thank all the authors for their contribution and the members of
the program committee and the external reviewers for the substantial feedback
they provided on the submitted manuscripts, and Torsten Hildebrandt for his
significant help in the workshop organization. We thank collaborative research
centers “SFB 637 Autonomous Cooperating Logistic Processes” and “SFB/TR
8 Spatial Cognition”, funded by the German Research Foundation (DFG), for
their support. Financial support provided by the University of Bremen is also
gratefully acknowledged. Last but not least we thank the IJCAI 2011 organiza-
tion, in particular Adele Howe and Carles Sierra, for helping to make AILog-
2011 possible.

1

We are looking forward to an inspiring exchange of ideas and fruitful dis-
cussions in Barcelona.

Kerstin Schill
Bernd Scholz-Reiter
Lutz Frommberger

(AILog-2011 organizers)

2

INVITED TALK

ORGANIC TRAFFIC CONTROL

JÜRGEN BRANKE, UNIVERSITY OF WARWICK, UK

Recent trends in manufacturing lead to new challenges in logistics, as prob-
lems become much more complex and dynamic. Luckily, recent technological
advances make it possible to tackle these new challenges by providing effective
on-line control mechanisms. Organic computing is a recent paradigm aimed at
building technological systems that have more organic, or life-like properties,
including learning, self-adaptation and self-configuration. After some general
discussion of logistics and organic computing, the talk will present Organic
Traffic Control as one exemplary applicaton of Organic Computing technology.
The proposed approach continuously learns new and better traffic light control
strategies in a stochastic and dynamically changing environment, and switches
between them as appropriate.

3

TECHNICAL PAPERS

5

Challenges in Maintaining Minimal, Decomposable
Disjunctive Temporal Problems

James C. Boerkoel Jr. and Edmund H. Durfee
Computer Science and Engineering, University of Michigan

Ann Arbor, MI
{boerkoel,durfee}@umich.edu

Abstract
In many scheduling applications, new scheduling
constraints can arise dynamically due to exoge-
nously determined events and preferences. In such
environments, maintaining a set of all possible re-
maining schedules can be much more robust than
selecting a single schedule. In this paper we dis-
cuss two properties, minimality and decomposabil-
ity, that are necessary for faithfully representing the
set of all remaining solutions to a Disjunctive Tem-
poral Problem (DTP). We prove minimal and decom-
posable representations always exist for a consistent
DTP. We also introduce metrics for comparing dif-
ferent minimal, decomposable DTP representations
in terms of space and time efficiency and propose
ideas for improving efficiency based on work from
dispatching disjunctive schedules.

1 Introduction
In many scheduling applications, the actual duration of a spe-
cific activity, such as the transportation time between two
locations, may be either uncertain, exogenously determined,
or subject to unexpressed preferences. As an example, con-
sider a truck that starts out at a depot and must make deliveries
to three different locations by a predetermined deadline. While
the truck can visit the three locations in any order, each order
may have different implications on travel and processing time
due to traffic congestion and the overhead involved in reshuf-
fling inventory on the truck. In such applications, calculating
a single plan with a specific schedule may be brittle to the
dynamics and preferences involved in the problem. A more
robust approach for dealing with uncertainty, dynamism, and
unexpressed preferences in logistics and scheduling applica-
tions is to instead calculate the set of all feasible schedules.
This approach efficiently supports queries of the form “When
can I perform delivery A?”, or “Can I make delivery X before
I make delivery Y ?”.

However, the set of all feasible schedules generally grows
exponentially in size as the number of events increases. Fortu-
nately, there exist constraint-based problem formulations that
are capable of compactly representing sets of feasible sched-
ules [Dechter et al., 1991; Stergiou and Koubarakis, 2000;
Shah and Williams, 2008]. The most general of these is called

the Disjunctive Temporal Problem (DTP), whose generality
is required for representing the example problem described
above. Faithfully representing the set of all feasible solu-
tions requires establishing properties called minimality and
decomposability. Minimality ensures that the complete set of
solutions is represented while decomposability ensures that
any consistent, partial schedule that respects constraints can
be soundly extended to a complete solution schedule.

In this paper, we will review three important constraint-
based scheduling problem formulations, including the Disjunc-
tive Temporal Problem (DTP) in Section 2. We will demon-
strate that the concepts of minimality and decomposability,
which are well defined for some problem formulations, ex-
tend naturally to the more general DTP. We will also prove
in Section 3 that despite fundamental differences from their
less-complex predecessors, minimal, decomposable represen-
tations for consistent DTPs always exist. In Section 4 we
explore the challenges associated with establishing minimal,
decomposable DTP representations that are more efficient in
terms of space (compactness) and the speed of reestablish-
ing minimality and decomposability after an update. Gaining
inspiration from important related work in dispatching disjunc-
tive scheduling, we will identify specific challenges to, and
propose ideas for, more efficient maintenance. Finally, we will
conclude with some discussion and future work in Section 5.

2 Background
In this section we provide definitions necessary for understand-
ing our contributions.

2.1 Simple Temporal Problem
We begin by adapting our description of the Simple Temporal
Problem (STP) [Boerkoel and Durfee, 2011]. As defined by
Dechter et al. [1991], the Simple Temporal Problem (STP),
S = 〈V,CSTP 〉, consists of a set of timepoint variables, V ,
and a set of temporal difference constraints, CSTP . Each
timepoint variable represents an event, and has an implicit,
continuous numeric domain. Each temporal difference con-
straint cij is of the form vj − vi ≤ bij , where vi and vj are
distinct timepoints, and bij ∈ R is a real number bound on the
difference between vj and vi.

To exploit extant graphical algorithms and efficiently reason
over the STP constraint network, each STP is associated with a
weighted, directed graph, G = 〈V,E〉, called a distance graph.

7

The set of vertices V is as defined before (each timepoint
variable acts as a vertex in the distance graph) and E is a set of
directed edges, where, for each constraint cij of the form vj −
vi ≤ bij , we construct a directed edge, eij from vi to vj with
an initial weight wij = bij . As a graphical short-hand, each
edge from vi to vj is assumed to be bi-directional, compactly
capturing both edge weights with a single label, [−wji, wij],
where vj − vi ∈ [−wji, wij] and a weight wxy is initialized
to∞ if there exists no corresponding constraint, cxy ∈ CSTP .
All times (e.g. ‘clock’ times) can be expressed relative to a
special zero timepoint variable, z ∈ V , that represents the
“start of time”. Bounds on the difference between vi and z can
be thought of as “unary” constraints specified over a timepoint
variable vi. Moreover, wzi and wiz then represent the earliest
and latest times, respectively, that can be assigned to vi, and
thus implicitly define vi’s domain. In this paper, we will
assume that z is always included in V and that, during the
construction of G, an edge ezi is added from z to every other
timepoint variable vi ∈ V . Examples of distance graphs that
correspond to solutions for the example problem introduced
in Section 1 (and formalized in Section 2.2) are in Figure 1.
An STP is consistent if it contains at least one solution, which
is an assignment of specific time values to timepoint variables
that respects all constraints to form a schedule. Approaches
for efficiently finding and representing the set of all solutions
is presented in Section 2.4.

2.2 Disjunctive Temporal Problem
In order to represent a scheduling problem as an STP, the
relative, partial order of all involved timepoints must be pre-
determined. However, many scheduling problems require
making decisions over the relative order in which to execute
activities. For example, capturing the fact that the truck can
visit locations in any order requires disjunctive constraints.
In comparison to the STP, the Disjunctive Temporal Problem
(DTP), D = 〈V,CDTP 〉, specifies a more general set of dis-
junctive constraints, CDTP , where c ∈ CDTP represents a
disjunction over a set of any temporal difference constraints.
A constraint c takes the form d1 ∨ d2 ∨ · · · ∨ dk for some
k ≥ 1, where each disjunct d represents a typical temporal
difference constraint over (possibly different) pairs of time-
points, vj − vi ≤ bij . Note that an STP is a special case of
a DTP where k = 1 for all constraints (CSTP ⊆ CDTP and
subsequently, STP ⊆ DTP).

Equipped with the more general DTP representation, we
now formally illustrate how to faithfully capture the constraints
and other aspects of a more detailed version of the example
logistics problem introduced in Section 1. We summarize this
representation in Table 1. The problem involves a single truck
that needs to make deliveries to three locations, A,B, and C.
In addition to the zero timepoint z (where z = 0 represents
the start time of the journey), there are timepoint variables
representing the arrival XIN and departure XOUT of the truck
to location X , for each of the three locations. The truck starts
its day at a relatively centrally-located depot, and must make
each delivery by various deadlines (XOUT − z ≤ bDL(X)

∀X where bDL(X) is delivery X’s deadline). Each location
requires at least 30 minutes duration for unloading (XIN −
XOUT ≤ −30 ∀X). Note that constraints over transition

Trans. from Depot Deadline Min. Duration
z − AIN ≤ −60; AOUT − z ≤ 300; AIN − AOUT ≤ −30;
z − BIN ≤ −75; BOUT − z ≤ 360; BIN − BOUT ≤ −30;
z − CIN ≤ −90; COUT − z ≤ 420; CIN − COUT ≤ −30;

Location to Location Transition (disjunctive)
AOUT − BIN ≤ −60 ∨ BOUT − AIN ≤ −90;
BOUT − CIN ≤ −90 ∨ COUT − BIN ≤ −120;
AOUT − CIN ≤ −120 ∨ COUT − AIN ≤ −150

Table 1: Summary of the example logistics problem.

𝐴𝐼𝑁 𝐴𝑂𝑈𝑇 𝐵𝐼𝑁 𝐵𝑂𝑈𝑇 𝐶𝐼𝑁 𝐶𝑂𝑈𝑇

𝑧

[30,150]

[300,420] [270,390] [180,300] [150,270] [90,210] [60,180]

[60,180] [30,150] [90,210] [30,150]

𝐵𝐼𝑁 𝐵𝑂𝑈𝑇 𝐴𝐼𝑁 𝐴𝑂𝑈𝑇 𝐶𝐼𝑁 𝐶𝑂𝑈𝑇

𝑧

[30,75]

[375,420] [345,390] [225,270] [195,240] [105,150] [75,120]

[90,135] [30,75] [120,165] [30,75]

a) The minimal, decomposable STP distance graph corresponding to labeling:
ℓ = {𝐴𝑂𝑈𝑇 − 𝐵𝐼𝑁 ≤ −60; 𝐵𝑂𝑈𝑇 − 𝐶𝐼𝑁 ≤ −90; 𝐴𝑂𝑈𝑇 − 𝐶𝐼𝑁 ≤ −120}

b) The minimal, decomposable STP distance graph corresponding to labeling:
 ℓ = {𝐵𝑂𝑈𝑇 − 𝐴𝐼𝑁 ≤ −90; 𝐵𝑂𝑈𝑇 − 𝐶𝐼𝑁 ≤ −90; 𝐴𝑂𝑈𝑇 − 𝐶𝐼𝑁 ≤ −120}

Figure 1: The distance graphs corresponding to minimal, de-
composable solutions to the example problem (Table 1) corre-
sponding to the three feasible labelings.

time (e.g., constraints of the form XOUT − YIN ≤ bY X ∨
YOUT −XIN ≤ bXY for some locations X and Y and bounds
bY X and bXY), which include transportation time, are neither
reflexive nor transitive due to traffic congestion and overhead
involved in reshuffling inventory on the truck.

The DTP is often solved using a meta-CSP formulation,
where each disjunctive temporal constraint c ∈ CDTP forms a
meta-variable with a domain of meta-values composed of the
set of possible disjuncts. Following the notation of Dechter
et al. [1991], a labeling, `, of a DTP, D, is an STP formed
by selecting one meta-value (disjunct) for each meta-variable
(disjunctive constraint). A schedule s, then, is a solution to
D if and only if it is a solution to one of D’s labelings. For
general DTPs, there are O(k|CDTP |) possible labelings, each
of which must be explored in the worst case, making the DTP
an NP-hard problem [Stergiou and Koubarakis, 2000]. In this
particular example problem, of the 23 = 8 possible labelings,
only two (A→ B → C and B → A→ C; which correspond
to the STPs in Figure 1 (a) and (b) respectively) satisfy all
scheduling constraints.

A singleton constraint, c ∈ Ck=1
DTP , is one that contains

only a single disjunct. Tsamardinos and Pollack [2003] note
that the subset Ck=1

DTP ⊆ CDTP can be used to form an STP〈
V,Ck=1

DTP

〉
. This STP can be used to compile new and tighter

singleton constraints that constrain which meta-values can
be assigned to which meta-variables. This forward-checking
procedure prunes any disjunct that is inconsistent with the
STP compilation, since it is guaranteed to be inconsistent with

James Boerkoel, Ed Durfee

8

the overall DTP. This pruning process may result in more
constraints being added to the set Ck=1

DTP , which further tight-
ens the STP compilation, possibly leading to more pruning.
In the extreme, this process could prune until all disjunctive
temporal constraints are singleton, eliminating the need for
combinatorial search in the meta-CSP.

More generally, the meta-CSP formulation leads to a search
algorithm that interleaves the STP forward-checking proce-
dure with an assignment of a meta-value to a meta-variable.
This has the effect of growing the set Ck=1

DTP and incrementally
tightening the corresponding STP compilation. If a particular
assignment of a meta-value di to a meta-variable ci leads to
an inconsistent STP instance, that assignment is backtracked.
Since at this point di is known to be inconsistent with the cur-
rent STP compilation, a procedure known as semantic branch-
ing allows the STP relaxation to be tightened by adding di’s
inverse implication. Expressing these otherwise implicit con-
straints further tightens the STP relaxation, which in turn can
lead to improved forward checking performance. Additionally,
Tsamardinos and Pollack [2003] describe how to incorporate
CSP techniques such as no-good recording and backjumping
into the meta-CSP search algorithm to further decrease DTP
solution algorithm runtime.

2.3 Temporal Constraint Satisfaction Problem
A Temporal Constraint Satisfaction Problem(TCSP), T =
〈V,CTCSP 〉, is a special case of a DTP (CSTP ⊆ CTCSP ⊆
CDTP and thus STP ⊆ TCSP ⊆ DTP) where each con-
straint c ∈ CTCSP takes the form vj−vi ∈ [−b1ji, b1ij]∨ . . .∨
[−bkji, bkij]. That is, all disjuncts specify bounds over the differ-
ence between the same two timepoints. Similarly to the DTP,
each of O(k|CTCSP |) possible labelings may need to be ex-
plored before finding a solution, making the TCSP an NP-hard
problem [Dechter et al., 1991]. While there exist procedures
for transforming a DTP to a TCSP [Planken, 2007], the TCSP
is more limited in the problems it can naturally represent. For
example, the disjunctive constraints from the simple running
example problem involve different pairs of variables (Table 1,
lower), which the TCSP is not directly able to represent.

2.4 Minimality and Decomposability
Dechter et al. [1991] define both minimality and decompos-
ability in terms of temporal constraint networks such as the
STP and the TCSP. These definitions extend quite naturally
to the DTP. A minimal constraint cij is one whose interval(s)
correctly specify the set of all feasible values for the difference
vj − vi. Similarly, a variable with a minimal domain is one
whose constraints with the zero timepoint are minimal. A DTP
is minimal if and only if all of its constraints and timepoint
domains are minimal. A DTP is decomposable if any locally
consistent assignment of a set of timepoint variables can be
extended to a solution. Each of the STPs presented in Figure 1
are both minimal and decomposable.

In short, a minimal and decomposable DTP faithfully repre-
sents the complete and sound set of solutions by establishing
the tightest bounds on timepoint variables such that: (1) no
solutions are eliminated and (2) any assignment of a specific
time to a timepoint variable (or bound to a constraint) that
respects these bounds can be extended to a solution using a

backtrack-free search. Establishing minimality and decompos-
ability allows efficient processing of queries such as “at what
time can activity X be performed” and “what are the poten-
tial relationships between activity X and Y ”. Unfortunately,
establishing minimality and decomposability for general, dis-
junctive scheduling problems, such as the TCSP and DTP, is
NP-hard [Dechter et al., 1991].

The STP presents a special case where minimality and de-
composability can be established efficiently (in O(|V |3)) by
applying an all-pairs-shortest-path algorithm, such as Floyd-
Warshall [1962], to the distance graph to find the tightest pos-
sible path between every pair of timepoints, vi and vj , forming
a fully-connected graph, where ∀i, j, k, wij ≤ wik+wkj . The
resulting graph is then checked for consistency by validating
that there are no negative cycles, that is, ∀i 6= j, ensuring
wij + wji ≥ 0 [Dechter et al., 1991]. Recent work exploits
sparsity in the constraint network to establish minimality and
decomposability more efficiently [Xu and Choueiry, 2003;
Shah and Williams, 2007; Planken et al., 2008].

Since establishing minimality and decomposability in dis-
junctive temporal problems is NP-hard, much work has fo-
cused on efficient, polynomial-time methods to increase
the level of consistency [Dechter et al., 1991; Stergiou
and Koubarakis, 2000; Tsamardinos and Pollack, 2003;
Choueiry and Xu, 2004]. These consistency improvements
are a partial step towards establishing minimal and decom-
posable representations and can be used as a preprocessing or
constraint propagation technique during a meta-CSP search
to find a component STP solution. Next we will prove that
minimal, decomposable representations for consistent DTPs
always exist.

3 The Existence of Minimal, Decomposable
DTP Representations

In this section, we prove that the definitions of minimality and
decomposability do indeed extend to DTPs by proving that
a minimal and decomposable representation for a consistent
DTP always exists. Despite the similarities between the TCSP
and the DTP, there are challenges to extending the concepts
of minimality and decomposability to the DTP. The heart of
these challenges stem from the fact that DTP constraints can
be specified over arbitrarily many different pairs of timepoint
variables. While in a TCSP, it is well-defined whether or not
there is a constraint that must necessarily be enforced between
a pair of timepoint variables, this is not the case in DTPs.
From the running example problem, the temporal difference
constraint between AIN and BOUT only needs to be enforced
if the temporal difference constraint between BIN and AOUT

is not enforced, and vice-versa. That is, the structure of a
minimal, decomposable temporal constraint network for a
TCSP is obvious a priori (since disjunctive choices are always
still between the same pair of timepoints), while the structure
of a minimal, decomposable temporal constraint network for
the more general DTP is not.

Notice that the set of solutions to both the DTP and TCSP
can be represented as a set of minimal, decomposable STPs.
To generate this set, we can naı̈vely enumerate each of the
DTP’s (exponentially many) feasible labelings, ` and then

Challenges in Maintaining Minimal, Decomposable Disjunctive Temporal Problems

9

−195, −150
∨

[60,180]

𝐴𝐼𝑁 𝐴𝑂𝑈𝑇 𝐵𝐼𝑁 𝐵𝑂𝑈𝑇 𝐶𝐼𝑁 𝐶𝑂𝑈𝑇

𝑧

[30,150]

[300,420] [270,390]

105,150
∨

180,300

75,120
∨

[150,270]

90,210
∨

[225,270]

60,180
∨

[195,240]

[30,150] 90,210
∨

[240,285]

[30,150]

−135, −90
∨

[120,240]

120,165
∨

[180,300]

Figure 2: A TCSP representing the minimal network associ-
ated with the problem in Table 1.

calculate the minimal, decomposable STP associated with
each `. We exploit this observation in our proof that minimal
representations of DTPs always exist, which follows as a series
of corollaries to Dechter et al.’s proof (omitted for brevity) of
Theorem 1:

Theorem 1. [Dechter et al., 1991] The minimal network,M,
of a given TCSP, T , satisfiesM = ∪`M`, where M` is the
minimal network of the STP defined by labeling `, and the
union is over all possible labelings.

Corollary 1. The minimal network,M, of a given DTP, D,
satisfiesM = ∪`M`, where M` is the minimal network of the
STP defined by labeling `, and the union is over all possible
labelings.

Proof. Follows mutatis mutandis from Theorem 1.

Corollary 2. A minimal representation of a consistent DTP
always exists.

Proof. The minimal network,M, of a DTP, D = 〈V,C〉, can
always be formulated as the TCSP, T = 〈V,CM〉, where the
set of constraints, CM, is composed of constraints cij ∈ CM
defined as vj − vi ∈ ∪`(M`)ij , where (M`)ij corresponds
to the bound interval on the difference between vj and vi in
the minimal network of the STP corresponding to label `.

Figure 2 represents the TCSP that forms the minimal net-
work for the example problem presented in Table 1. Notice that
we include every edge that shows up in either of the solution
STPs. For example, the edge between AIN and BOUT is in-
cluded with both a negative and positive interval, capturing the
cases where A occurs before B and vice-versa, respectively.
Note that in general an algorithm that assigns timepoints using
the minimal network alone does is not guaranteed decompos-
ability. For example, if we assign the duration of any of the
activities represented in Figure 2 to 80, our future assignments
should be limited according to selecting the STP in Figure 1
(a); however, the propagation of constraints in the minimal
network alone does not guarantee that this would occur.

While the original definition of the decomposability prop-
erty — a temporal network where any locally consistent as-
signment of a set of timepoint variables can be extended to
a solution — extends naturally to the DTP, it is immediately
not obvious whether or not decomposability can always be
established for a DTP for a couple of reasons. First is that

a DTP involves constraints with high cardinality, which, in
general, can be much harder to decompose than a problem
exclusively containing binary constraints [Gent et al., 2000].
A second, related reason is that how the set of timepoint vari-
ables is assigned influences whether or not certain temporal
difference constraints need be enforced in the set’s comple-
ment. However, we again exploit our naı̈ve representation to
prove:

Theorem 2. A decomposable representation of a consistent
DTP always exists.

Proof. If a DTP is consistent, its set of solutions can be repre-
sented as a set of minimal, decomposable STPs corresponding
to each feasible labeling, `. Given this representation, any
assignment to a set of variables locally consistent with at least
one of these STPs, by definition of a decomposable STP, is
guaranteed to be extensible to a solution.

This theorem leads naturally to a procedure for assigning
variables in a locally consistent way. First, a variable can only
be assigned a value if it appears in its domain (or alternatively,
a constraint can only be assigned a bound within one of its
intervals of possible bounds) in at least one minimal, decom-
posable solution STP. Second, once an assignment is made,
all STPs that are inconsistent with this assignment are pruned,
thereby guaranteeing that subsequent assignments will be lo-
cally consistent within one or more minimal, decomposable
solution STPs.

In this section, we demonstrated that minimal, decompos-
able representations always exist for consistent DTPs. How-
ever, in general, enumerating every minimal, decomposable
STP for each of the exponentially-many consistent labelings is
neither compact nor efficient to reason over. In the next section
we explore the challenges for more efficiently representing
and establishing minimal, decomposable DTPs.

4 An Efficient Minimal, Decomposable DTP
Representation

While we have shown that minimal, decomposable representa-
tions for consistent DTPs always exist, all representations are
not necessarily created equally. As discussed earlier, one of the
main advantages of a minimal, decomposable DTP representa-
tion is to support queries that ask “when can I perform activity
X” either in general, or relative to another timepoint. However,
presumably if one is interested in posing such queries, one is
also interested in both making informed scheduling decisions,
and perhaps performing additional queries in the future. So
in this sense, we are also interested in how efficiently a min-
imal, decomposable DTP can be updated. Finally, given the
exponential nature of the problem, in many scenarios, space
requirements of the representation may also be of concern.
In summary, we can compare representations in terms of (1)
query efficiency, (2) update efficiency, and (3) space efficiency.

While our construction of the minimal network related to a
DTP may support efficient queries, overall, using a possibly
exponential number of STPs to represent and maintain (e.g.
update) a decomposable DTP is likely to be quite inefficient
in general. These issues lead to a natural question: are there

James Boerkoel, Ed Durfee

10

better ways for establishing and representing minimal, decom-
posable DTPs than the naı̈ve approaches described in Section
3? We turn to some important related work in dispatching
disjunctive schedules for insights into answering this. While
not all goals of dispatchable execution align perfectly to those
of maintaining minimal, decomposable DTPs, a dispatch agent
must make fast recommendations (query efficiency, update
efficiency) and may also have limited space capabilities (space
efficiency).

4.1 Related Work: Fast Dispatch of Disjunctive
Schedules

A minimal, decomposable STP instance naturally lends itself
to dispatchable execution — an online approach whereby a
dispatcher efficiently adapts to scheduling upheavals by impos-
ing additional, restrictive constraints by scheduling timepoints
immediately prior to execution [Muscettola et al., 1998]. Shah
and Williams [2008] generalize this idea to disjunctive schedul-
ing problems by calculating a dispatchable representation of a
TCSP. While a previous approach for dispatching DTPs exists
[Tsamardinos et al., 2001], this approach is similar in spirit to
the naı̈ve approach described in Section 3 by calculating and
maintaining the set of all solution STPs. However, Shah and
Williams [2008] recognize that many of the solution schedules
contain significant redundancy, and so compactly represent the
set of decomposable STP solution instances in terms of just
their differences. This approach leads to not only a much more
compact representation, but also faster execution by avoiding
the need to simultaneously and separately update each dis-
parate STP. The algorithm propagates each disjunct using a
recursive, incremental constraint compilation technique, and
for each disjunct, a list of logical conclusions is kept. Ad-
ditionally, a list of conflicts is maintained as inconsistencies
arise. Their basic execution dispatch algorithm adds each time-
point without any predecessors to an event list, and then as
one of these timepoints becomes ‘live’ (when the current time
falls within timepoint’s domain), it is selected and updated to
occur at the current time, after which the update is propagated
throughout the remaining problem. They demonstrate empiri-
cally that their approach leads not only to orders of magnitude
more compact representations, but also to orders of magnitude
faster execution than the suggested naı̈ve approach.

4.2 Extending to the DTP
Since the set of solutions for both DTPs and TCSPs can be
represented by a set of minimal, decomposable STP solu-
tions, Shah and Williams’ approach for compactly represent-
ing the set of solutions by eliminating redundant informa-
tion is naturally extensible to the DTP. In fact, note that the
compact list of implied relationships (of the form vj − vi ∈
[−bji, bij] → vy − vx ∈ [−byx, bxy]) and conflicts (of the
form ¬vj − vi ∈ [−bji, bij] ∨ . . . ∨ ¬vy − vx ∈ [−byx, bxy])
output by Shah and Williams’ approach requires the generality
of a DTP constraint to represent (since they are constraints
involving different pairs of variables). This leads to a more
general observation:
Observation 1. Efficiently representing a set of minimal, de-
composable STPs in conjunctive normal form (CNF) requires
the representational power of a DTP.

Constraints for Figure 1 (a) Constraints for Figure 1 (b)
AOUT − BIN ≤ −60→ BOUT − AIN ≤ −90→
(BOUT − AIN ≤ −90∨) (AOUT − BIN ≤ −60∨)

AIN − z ≤ 180; z − AIN ≤ −195;
AOUT − z ≤ 210 z − AOUT ≤ −225;
z − BIN ≤ −150 BIN − z ≤ 120;
z − BOUT ≤ −180 BOUT − z ≤ 150;

AOUT − CIN ≤ 165; CIN − AOUT ≤ −180;
CIN − BOUT ≤ −240; BOUT − CIN ≤ 210;

AOUT − AIN ≤ 75;
BOUT − BIN ≤ 75;
COUT − CIN ≤ 75;
z − CIN ≤ −345;
z − COUT ≤ −375;

Table 2: A minimal, decomposable representation of the ex-
ample logistics problem.

In addition to the constraints displayed in Figure 2, the con-
straints presented in Table 2 guarantee both minimality and
decomposability for the example logistics problem. Following
the same principle as Shah and Williams, we capture these
implied relationships compactly by noting that the only dif-
ference in the labelings between the Figure 1 (a) and Figure
1 (b) are the labels AOUT −BIN ≤ −60 (which implies the
STP encoded by the temporal difference constraints in the first
column of Table 2) and BOUT −AIN ≤ −90 (which implies
the STP encoded by the temporal difference constraints in the
second column of Table 2). As a result, any update that is not
common to both solution STPs will result in the the correct
labeling being applied during forward-checking, which in turn
results in a decomposable, minimal network after propagat-
ing the constraints. Whereas our representation required a
linear (in the number of STP solution edges) number of ad-
ditional constraints, to generally represent the two solutions
encoded in Figure 1 in CNF form would require representing
a combinatorial number of additional disjunctive constraints.

4.3 Open Challenges
To this point, we have exploited the DTP’s similarity to the
TCSP to address many important challenges associated with
maintaining minimal, decomposable DTP representations. Par-
ticularly, we have shown that we can conceptually extend Shah
and Williams’ framework to calculate minimal, decomposable
DTP representations, but minimality and decomposability only
guarantee query efficiency. We now identify important differ-
ences between the DTP and TCSP that lead to unique chal-
lenges in efficiently establishing and maintaining minimality
and decomposability in DTPs.

At a high level, Shah and Williams’ approach is roughly
similar to the meta-CSP search described in Section 2.2, how-
ever there are many important key differences that pose unique
challenges for update efficiency. First, when propagating con-
straints in a TCSP, forward-checking only directly affects the
constraint that is currently being propagated. However, in a
DTP, pruning a meta-value during forward-checking could
lead to a unary meta-variable (disjunctive constraint with only
one remaining feasible temporal difference constraint) [Ster-
giou and Koubarakis, 2000]. This in turn could lead to a new
constraint being posted in a distant, non-neighboring portion
of the temporal network. That is, propagation jumps around
the temporal network rather than only following links through

Challenges in Maintaining Minimal, Decomposable Disjunctive Temporal Problems

11

the network. A second, related difference is that DTP search
decisions themselves also can fundamentally change the struc-
ture of the temporal constraint network by deciding to add
temporal difference constraint between one pair of timepoints
instead of some other, different pair. Both of these differences
pose challenges to update efficiency, since it is no longer possi-
ble to systematically propagate constraints using the temporal
network alone. Instead, updates must be simultaneously prop-
agated through both the low-level, minimal temporal network
and also the high-level, meta-level CSP. Incorporating support
for general, decomposability in the meta-CSP requires funda-
mental changes to Shah and Williams’ algorithm to efficiently
learn and maintain all implied relationships and no-good con-
straints at the meta-level.

Together, these two differences pose a third challenge: can
we encode the differences between two solution STPs as com-
pactly, when the differences between them are more system-
atic in nature? Recall that Shah and Williams’ basic approach
attempts to exploit redundant information. However, when
search decisions and constraint propagation lead to temporal
networks with significant differences in structure (e.g., STPs
that contain different constraints between different pairs of
timepoints), it is unclear how compact, in general, the repre-
sentation that this approach generates will be.

Finally, up to this point, when we discuss update efficiency,
we have largely meant returning a perturbed minimal, de-
composable DTP back to a minimal and decomposable state.
However, in many applications, the time it takes to estab-
lish the initial minimal, decomposable representation may be
critical. Shah and Williams’ approach is intended as a pre-
compilation approach, and so is never evaluated in terms of
initial compilation time. We conjecture that incorporating re-
cent CSP-based search techniques, such as forward-checking,
no-good learning, etc. [Tsamardinos and Pollack, 2003],
and also SAT-based techniques, such as unit-propagation
and a two-literal watching, etc. [Armando et al., 2004;
Nelson and Kumar, 2008] could speed the overall process
of establishing a decomposable by orders of magnitude, but
also poses significant algorithmic engineering challenges.

5 Discussion
In this paper, we demonstrated how the concepts of minimality
and decomposability, which had previously been formally de-
fined for only the STP and TCSP, can naturally be extended to
the more general DTP formulation to represent the complete,
sound set of solutions. We contributed proofs that minimal and
decomposable representations of consistent DTP always exist,
though not necessarily in an efficient, compact form. We intro-
duced metrics for comparing different minimal, decomposable
DTP representations in terms of efficiency, including com-
pactness (space) and query and update speed. We then both
discussed the challenges of and offered insights for extend-
ing an approach for incrementally compiling TCSPs for fast
schedule dispatching to the more general DTP. An interesting
extension of this work would be an algorithm that can compute
and maintain minimal and decomposable DTP representations
in a more incremental or anytime manner for applications that
cannot afford to wait for costly precompilation algorithms to

complete. Our vision is that the insights of this work can lead
to online algorithms that effectively and efficiently adapt to
scheduling eventualities that arise in real time and do so with
minimal space requirements. These algorithms would have
significant implications for logistics applications where the
pace of scheduling perturbations may outstrip a scheduler’s
ability to replan or reschedule, while also granting more auton-
omy for practitioners to, on-the-fly, select the schedules and
plans that best suit their immediate needs and preferences.

References
[Armando et al., 2004] A. Armando, C. Castellini, E. Giunchiglia,

and M. Maratea. A SAT-based Decision Procedure for the Boolean
Combination of Difference Constraints. In Proc. of SAT’04, pages
166–173, 2004.

[Boerkoel and Durfee, 2011] J.C. Boerkoel and E.H. Durfee. Dis-
tributed Algorithms for Solving the Multiagent Temporal Decou-
pling Problem. In Proc. of AAMAS 2011, pages 141–148, 2011.

[Choueiry and Xu, 2004] B.Y. Choueiry and L. Xu. An efficient con-
sistency algorithm for the temporal constraint satisfaction problem.
AI Communications, 17(4):213–221, 2004.

[Dechter et al., 1991] R. Dechter, I. Meiri, and J. Pearl. Temporal
constraint networks. In Knowledge representation, volume 49,
pages 61–95. The MIT Press, 1991.

[Floyd, 1962] R.W. Floyd. Shortest path. Communications of the
ACM, 5(6):345, 1962.

[Gent et al., 2000] I. Gent, K. Stergiou, and T. Walsh. Decompos-
able Constraints. Artificial Intelligence, 123(1-2):133–156, 2000.

[Muscettola et al., 1998] N. Muscettola, P. Morris, and I. Tsamardi-
nos. Reformulating temporal plans for efficient execution. In Proc.
of KR’98, pages 444–452, 1998.

[Nelson and Kumar, 2008] Blaine Nelson and T. K. Satish Kumar.
CircuitTSAT: A solver for large instances of the disjunctive tem-
poral problem. In Proc. of ICAPS-08, pages 232–239, 2008.

[Planken et al., 2008] L. Planken, M. de Weerdt, and R. van der
Krogt. P3C: A new algorithm for the simple temporal problem.
In Proc. of ICAPS-08, pages 256–263, 2008.

[Planken, 2007] Leon R. Planken. Temporal reasoning problems
and algorithms for solving them (literature survey). Literature
survey, Delft University of Technology, October 2007.

[Shah and Williams, 2007] J.A. Shah and B.C. Williams. A Fast In-
cremental Algorithm for Maintaining Dispatchability of Partially
Controllable Plans. In Proc. of ICAPS-07, 2007.

[Shah and Williams, 2008] J.A. Shah and B.C. Williams. Fast Dy-
namic Scheduling of Disjunctive Temporal Constraint Networks
through Incremental Compilation. In Proc. of ICAPS-08, 2008.

[Stergiou and Koubarakis, 2000] K. Stergiou and M. Koubarakis.
Backtracking algorithms for disjunctions of temporal constraints.
Artificial Intelligence, 120(1):81–117, 2000.

[Tsamardinos and Pollack, 2003] I. Tsamardinos and M.E. Pollack.
Efficient solution techniques for disjunctive temporal reasoning
problems. Artificial Intelligence, 151(1-2):43–89, 2003.

[Tsamardinos et al., 2001] I. Tsamardinos, M.E. Pollack, and
Ganchev P. Flexible Dispatch of Disjunctive Plans. In Proc.
of ECP-06, pages 417–422, 2001.

[Xu and Choueiry, 2003] L. Xu and B Choueiry. A new effcient
algorithm for solving the simple temporal problem. In Proc. of
TIME-ICTL-03, pages 210–220, 2003.

James Boerkoel, Ed Durfee

12

Timeline-based Planning System for Manufacturing Applications

Minh Do and Serdar Uckun
Embedded Reasoning Area, Palo Alto Research Center.

Email: {minh.do,uckun}@parc.com

Abstract

In recent years, the Embedded Reasoning Area
(ERA) has been developing a planning system tar-
geting fast online planning problems in manufactur-
ing. The planner, which is based on general-purpose
AI planning techniques, has evolved through sev-
eral iterations and successfully solved applications
such as hyper-modular printers, modular packaging
machines, material control for LCD manufacturing,
and warehouse management. In this paper, we will
describe the core techniques underlying the current
version of the planner: a combination of timeline-
based state representation and action-based planning
algorithm. This combination is proven to be flexible
and can quickly adapt to new applications and at the
same time can scale to complex problems.

1 Introduction

Our research on model-based online planning starts with the
Tightly Integrated Parallel Printer (TIPP) project [Ruml et al.,
2005; Do et al., 2008; Ruml et al., 2011] where we need to
effectively control reconfigurable printing systems. After the
success of this project, there have been efforts in adopting the
software, in particular the planner to new applications. The
first application was controlling modular packaging machine,
which shown that the adaptation of the TIPP planner can ef-
fectively control (in simulation) a variety of high-speed infeed
systems of food flow-wrapper machines. However, this is just
the first step in generalizing it to solve a more general class of
problems in manufacturing.

After the initial investigation in the packaging domain, we
have been further extending our model-based planner so that
it can easily be adapted to a wide variety of application do-
mains. Recently, our planner has been used in several funded
projects by the IHI Corporation in 2010 and 2011 for different
applications: Material Control System (MCS) and Automated
Warehouse. In this paper, we outline the architecture of the
new planner and the application domains that it was tested on.

The rest of this paper is organized as follows: we start with
the timeline-based online planning architecture in the next sec-
tion. We then follow with two implemented planning algo-
rithms (1) forward state-space; and (2) partial-order in Sec-
tion 2.3 and Section 2.4. We outline the results of using our
planner in the manufacturing applications outlined above and
we finish the paper with some future work.

L01 L02

can pickupcan dropoff

Belt 1 lc 11 Belt 2

can pickup can dropoff

belt3

lc 12B 11 B21 B22lc 21lc 12B 11

Figure 1: A logistics example

2 Overall Architecture
Planning is the problem of finding a (sequential or parallel)
sequence of actions that when executed from a known initial
state will achieve all pre-defined goals. Our group has been
working on “fast continual on-line planning” problems where
user’s goals and system updates continuously arrive in concur-
rent with plan executions of previously found plans. In fast we
mean the software generally needs to find a complete solution
within a few seconds (sub-second in several cases).

Our current Plantrol planner uses a timeline-based planning
approach that operates by continually maintaining the time-
lines that capture how different system state variables change
their values over time. The planner builds and maintains con-
sistent plans by adding tokens to the affected timelines; with
each token represents a different operation/change affecting
the state variable represented by that timeline. The overall
framework allows selection among multiple planning algo-
rithms, all share the same timeline-based state representation,
for a given task. In turn, different planning algorithms can call
different search algorithms and constraint solvers (e.g., tempo-
ral reasoning, uncertainty reasoning) to solve either planning
or replanning tasks effectively.

To illustrate different concepts, we will first present a simple
example that will be used throughout the paper:
Example: shown in Figure 1 is an example inspired by IHI’s
MCS application. In this example, a package located at loca-
tion B11 needs to be moved to B22 using first the crane lo-
cated at LC12, then the overhead vehicle (OHV) that is origi-
nally at L02 and then lastly the second crane originally located
at LC21. The arrows in solid red color show the path of the
package. Note that there are a couple of actions belong to a
final plan but are not included in this path such as moving the
OHV from L02 to L01 and the second crane from LC21 to

13

LocationOf(Cassete) L1 L2 → L3L2 L3

F T

L1 → L2 Maintain at L2

Available(Crane1) T T → F F → T

3
2

0
2

F T

time

Space(Buffer1) [0;6]
0

t1 t5 t9t2 t7

Space - 1 Space - 2 Space + 2

Figure 2: Timeline example

Belt3. They are represented by solid blue arrows. The remain-
ing dotted blue arrows represent the other actions available but
are not part of the final plan.

2.1 Timeline-based State Representation
The input to the deterministic online planner consists of:

1. a set of variables V with each v ∈ V is associated with a
given domain of values D(v);

2. a set of actions A, each specified by its (pre)condition and
effect lists. An action condition represents a constraint on
the value of a given variable (e.g., v = x) and an action
effect represents a change to the value of a given variable
(e.g., v ← y).

3. a complete variable assignment for all v ∈ V represents
the fully observable initial state I .

4. a partial variable assignment G represents the desired
goal condition.

An action a is applicable in state s if all of its conditions
are satisfied by s and the resulting state from applying a in s
reflects the changes caused by a’s effects on s. The planner
needs to find a consistent sequence of actions (a plan) P that
can connect I to G.

For online continual planning scenarios, finding and ex-
ecuting plans and goal-arriving are interleaved. Given that
the planner needs to continuously reason about those inter-
leaving processes, we need to effectively maintain the sta-
tus of different state variables as they change values over
time. One good way to do so is through timelines and there
are several application-oriented planners, including TIPP, that
have used this approach at different levels [J. Frank, 2000;
Fratini et al., 2008].

Figure 2 shows an example of the timelines of several vari-
ables in our leading example: (1) a multi-value (discrete) vari-
able v1 = LocationOf(Package) that represents the pack-
age location; (2) a binary variable v2 = Available(Crane1)
represents whether or not Crane1 is busy carrying some pack-
age; (3) a continuous variable v3 = Space(Buffer1) rep-
resents the available/empty space in Buffer1. While we cur-
rently only support three types of variables (which are most
common) in our planner, theoretically any variable with a cer-
tain value domain can be included in the timeline set managed
by the planner.

The timeline for a given variable v consists of a value cv ∈
D(v), which is the value of v at the current wall-clock time
tc and a set of tokens representing future events affecting the
value of v. Those events represent pre-committed assignments
of different equipments/resources/objects. Figure 2 shows one
example where there are three tokens in the timeline for v1 =
LocationOf(Package) representing the following events (in
this order): (1) the value of v1 changes from the current value
v1 = L1 to a new location v1 = L2, (2) and v1 = L2 needs

to be maintained for certain duration; then (3) it changes again
from L2 to L3. Each token tk is represented by:
• Start and end time points start(tk) and end(tk).
• A start value vs (or bounds on start value [lb, ub] with

lb ≤ ub for continuous variable).
• Start condition (e.g., v = vs) specifies the condition that

needs to be satisfied by the token. Right now, we support:
=, 6=, >,<,≥,≤, NONE.

• Change operation 〈operator, value〉 (e.g., v ← v + 5
or v ← x) specifies how the variable value is changed
within the token duration. Some change operators are:
←, +=, -=, ×=, /=, CHANGE, USE, MAINTAIN1.

Given that tokens generally represent conditions and
changes caused by actions, there can be temporal relations be-
tween tokens that are either: (1) conditions/effects of the same
action a; (2) conditions/effects of actions that are related to
each other. For example, before we move the package from L1
to L2 using Crane1, the crane needs to pick up the package
first. Thus, tokens caused by the pick up action need to finish
before the tokens added by the move action and thus there are
temporal orderings between them.

Figure 3 shows an example of tokens on different timelines
created by a given action instance. On the left side, we show
the action representation in PTDL, a variation of PDDL [Fox
and Long, 2003] – a standard planning modeling language,
and the right side shows five tokens which would be added to
different timelines if action move is added to the plan. The
same action starting time point ts will be the starting time
of four tokens and thus those four are constrained to start to-
gether.

For a given action a, we will use T (a) to denote the set
of tokens caused by a.The set of timelines for all variables is
consistent if:
• Value consistent: Consecutive tokens on the same time-

line should make up a consistent sequence of changes.
Thus, the end value of a given token should match with
the start value of the next token2.
• Temporal consistent: All temporal constraints between

tokens should not cause any temporal inconsistency. One
example of temporal inconsistency is that two temporal
orderings: t1 < t2 and t2 < t1 are both deductible from
the temporal network.

A consistent timeline for vg achieves a given goal g =
〈vg, x〉 (i.e., vg = x) at the end of the timeline for vg if the
end value of the last token matches with x. Alternatively, we
say that it achieves g at some point in time if there exist a to-
ken T such that the end value of T matches x. For a given goal
set G, if for all g ∈ G the consistent timeline for vg satisfies
g then we say that the set TL of all timelines for all variables
satisfy G or TL |= G.

2.2 Timeline-based Online Continual Planning
The previous section discusses how the world state is repre-
sented and maintained in continual planning by using a set
of evolving timelines containing tokens representing actions’

1The variable value at the end of the token is calculated based on
the start value and the change operation.

2In matching, we generally mean equal but for continuous vari-
ables that are represented by a [lb, ub] interval, matching means that
two intervals overlap.

Minh Do, Serdar Uckun

14

(:action move
:parameters (?v ‐ vehicle ?l1 ?l2 ‐ location)
d i (/ (di ?l1 ?l2) (d ?)):duration (/ (distance ?l1 ?l2) (speed ?v))
:condition

([start,end] (direct‐connect ?l1 ?l2))
:effect

(over‐all

LocationOf(v): l1 → l2

Path(l1,l2): USE

SFree(l1): F →T

DirectConnect(l1,l2) = T

(
(change (location‐of ?v) ?l1 ?l2)
(use (path ?l1 ?l2)))

([start, start + 2] (change (space‐free ?l1) F T))
([end ‐ 2, end] (change (space‐free ?l2) T F)))

SFree(l2): T →F

time

ts tets+2 te‐2

Figure 3: Action and its corresponding tokens

conditions and effects. In this section, we provide a high-level
planning algorithm that operates on timelines and finds con-
sistent plans.

Algorithm 1: Timeline-Based Planning Algorithm
input : A consistent timeline set TL, a goal set G
output: Plan P achieves G & an updated timeline set TL
Let: P0 ← ∅, TL0 ← TL, and s0 = 〈P0, TL0〉;1

Initialize the state set: SQ = {s0};2

while SQ 6= ∅ and done = false do3
Pick the best state s = 〈Ps, TLs〉 from SQ;4

if TLs is consistent and TLs |= G then5
done = true6

else7
Generate zero or more revisions P ′ of Ps;8

Generate timeline sets TL′ ← TL
⋃

T (P ′);9
Add temporal constraints between temporally10

related tokens in TL′;
Add s′ = 〈TL′, P ′〉 to generated state set SQ;11

Execute Ps;12
Revise the master timeline set: TL← TLs;13

Algorithm 1 shows at a high-level a planning algorithm op-
erating on timelines. Some notations used in this algorithm,
and all subsequent algorithms described in the next several
sections are:
• For each time point tp (e.g., token’s start/end time-point):
est(tp) and lst(tp) represent the earliest and latest possi-
ble times that tp can happen.
• For an action set A: T (A) is the set of tokens caused

by all actions in A. Similarly, T (P) is the set of tokens
caused by all actions in the plan P .

The planner starts with a consistent timeline set TL repre-
senting all changes and constraints related to all state variables
from the current wall-clock time. It needs to find a plan P
such that (1) adding T (P) to TL does not cause any inconsis-
tency, (2) achieve all goals, and (3) executable (i.e., all tokens
caused by this plan should be able to start after the wall-clock
time at which the plan is found). The planner starts with an
empty plan and keeps revising it until achieving these objec-
tives (lines 8-11). The planner tries to find the best plan by
maintaining a set of generated states (which is composed of a
plan P and the timelines resulted from adding tokens caused
by P to the original timelines) and at each step picks the best

from the generated set to check for being a valid plan. When
the best plan P is found, we execute P (line 12) and incor-
porate its effects in the continually maintained timelines (line
13).

This high-level algorithm obviously lacks many details such
as: how to revise Ps (line 8)? what is the best plan? or what
exactly is the representation of the plan during the planning
process? On the other hand, it’s general enough to capture
both systematic and local-search style of planning, and for dif-
ferent planners that can handle different set of variables and
constraints. In the next two sections, we describe two imple-
mented algorithms based on this framework.

2.3 Forward State-Space Planner on Timeline
Forward state-space (FSS) planners move forward in time
through fixed-time complete state. It starts with an empty plan
and gradually add actions at some fixed wall-clock time to the
end of the currently expanding partial plan until the final se-
quence of actions satisfies the goals. In short, a visited “plan-
ning state” s of a FSS planner consists of: (1) a time-stamp ts
of s; (2) a set of timelines in which all tokens (i) end after ts
and (ii) have fixed start and end times.

The algorithm starts searching from the current wall-clock
time tc but will execute the plan at the (expected) wall-clock
time te > tc when the plan is found. To start the planning
process, the planner “freezes” all tokens in all timelines and
remove all tokens that end before te. This step simplifies the
token and timeline representation and also reduces their sizes.
The key details here are the successor generating functions to
create subsequent search nodes:

• Applicable: for each action a, the FSS planner moves for-
ward in time from the current state’s time stamp ts until it
finds an earliest time ta ≥ tc that if a executes at ta then
all new tokens added will not cause any inconsistency.
Any action ta that we can find a consistent execution time
ta is added to our candidate set.

• Apply: the planner generates successors by creating to-
kens corresponding to action’s conditions and effects and
add them to the current timelines.

• AdvanceTime: this is a special action that helps move the
state time-stamp ts forward closer to the goal. When
moving the time-stamp forward, it basically sets the
newer lower-bound on the future action execution time
and thus: (1) simplifying the timelines (remove all tokens
finish before the new time-stamp); and (2) reducing the
interactions between existing tokens and future actions.

Timeline-based Planning System for Manufacturing Applications

15

V1 = Location(Package) B11 → C1

V2 = Location(Crane1) Stay(L12)

B11

LC12

L02 timeV3 = Location(OHV)

tc+ tp

Plan Load(P,C1)

L02

Plan (,)

Location(Package) B11 → C1

Location(Crane1) Stay(L12)

B11

LC12

time

Location(Crane1)

Location(OHV)

Stay(L12)

L02 → L01

t1

L02

Plan Load(P,C1) Move(OHV,L01)

Location(Package) B11 → C1 C1 → Belt2 Belt2 → OHV

1

B11

time

Location(Crane1)

Location(OHV)

Stay(LC12)

L02 → L01

L02 → L01 Stay(LC11)

Stay(L01)

LC12

L02

Plan Load(P,C1) Move(OHV,L01)

Move(C1,LC11)

Unload(P,Belt2) Load(P,OHV)

t2

Figure 4: Example illustrating several steps of the FSS on timeline algorithm: adding actions in “forward” direction.

Given that the plan returned by the FSS algorithm has all
actions and tokens tied to some fixed wall-clock times, de-
pending on a particular search algorithm and heuristic setting,
the FSS planning algorithm may not return the plan with all
actions start at the earliest possible time according to their
temporal relation. The “fixed-time” plan found by the FSS
algorithm can easily be converted to flexible temporal plans
using techniques described in [Do and Kambhampati, 2003].

Figure 4 shows several steps with the goal of having a pack-
age inside an OHV. In the timelines for the three variables
mentioned above, tokens represented by solid rectangles are
from previous planning episodes and thus tokens created by
the current planning process should not overlap with them.
We start by setting up the time stamp te, and the planner starts
by adding an action of loading the package into Crane 1 at
te. This action addition creates two fixed-time tokens on the
timelines for v1 and v2. We then apply the AdvanceTime ac-
tion (several times) to reach t1 and apply the second action
to move the OHV to L01 (this adds one token to the time-
line of v3). After several steps of adding regular actions (e.g.,
Move(Crane, LC11), Unload(P,Belt2)) and several Ad-
vanceTime actions, we load the package into OHV . At this
time, all timelines are consistent and achieving all goals so we
terminate the planning process.

2.4 Partial-Order Planner (POP) on Timeline
The FSS algorithm described in the previous section finds
plans by moving forward through a sequence of consistent
timelines until a given timeline set satisfying all goals. On
the other hand, the POP algorithm finds plans by starting with
an inconsistent timeline set and systematically refines it until
it becomes consistent. The planner searches backward from
the goals. For that, it first creates special tokens representing
the goals and the planner’s objective is to create enough to-

kens through action addition so that those goal tokens are all
eventually supported. Instead of finding Applicable actions as
in the FSS algorithm, it finds Relevant actions, which can con-
tribute new tokens that support some currently un-supported
tokens. We have two-level branching: (1) over actions that are
deemed relevant; and (2) over token ordering where the new
tokens introduced by the newly added actions can be added
in the respective timelines. Note that there is no fixed start-
ing time for all actions and tokens but their start/end times are
represented by floating time points.

Figure 5 shows several steps in the POP algorithm finding
the plan with the same set of actions as the FSS algorithm
shown in Figure 4. The planner starts by creating a special
token v1 = In(OHV) at the end of the timeline for v1. It then
adds an action Load(P,OHV) to the plan because that action
can add a token to support v1 = In(OHV). Appropriate
temporal orderings are also added between related time points
(we show some of them in the figure). The algorithm keeps
picking un-supported tokens and add actions to support them
until the timelines are consistent and the final plan is found.

FSS vs. POP: Two algorithms have distinctive advantages.
The fixed-time and the association of a time-stamp for each
search state during the planning process lead to:

• Smaller state representation: (1) any token ends before
the current state’s time-stamp can be removed from con-
sideration; (2) no order between different tokens need
to be stored. They are implicitly implied by the fixed
start/end time of all tokens.

• Lower branching factor: each applicable action generates
exactly one successor.

Therefore, the FSS planner likely find some valid plan
faster. On the other hand, the POP algorithm employs a more

Minh Do, Serdar Uckun

16

Location(Package) B11 Belt2 → OHV

Location(Crane1) LC12

Location(OHV) Stay(L01)

In(OHV)

L02 timeLocation(OHV)

Plan Load(P,OHV)

Stay(L01)

t1

L02

Location(Package) C1 → Belt2 Belt2 → OHV

Location(Crane1)

Location(OHV)

Stay(LC11)

Stay(L01)

In(OHV)B11

LC12

L02 timeLocation(OHV)

Plan Unload(P,Belt2) Load(P,OHV)

Stay(L01)

t2 t1

L02

Location(Package) B11 → C1 C1 → Belt2 Belt2 → OHV

L ti (C 1) () S (LC11)

In(OHV)B11

LC12

time

Location(Crane1)

Location(OHV)

Stay(LC12)

L02 → L01

L02 → L01 Stay(LC11)

Stay(L01)

t ttt

LC12

L02

Plan Load(P,C1) Move(OHV,L01)

Move(C1,LC11)

Unload(P,Belt2) Load(P,OHV)

t2 t1

t3

t4t5

Figure 5: Example illustrating several steps of the POP on timeline algorithm: adding flexible actions in “backward” direction.

complete branching rule and thus does not rule out any valid
solution. FSS planner, due to the fact that it doesn’t consider
all possible action starting times (by only moves the time-
stamp forward to the next significant time point) may miss
some solutions.

Depending on the actual application, one algorithm may be
more appropriate: FSS is likely more suitable for applications
where finding a plan quickly is of critical; and POP may be
more appropriate where planning time is not critical but plan
quality is more important.

2.5 Makespan-estimation Heuristic
Planner’s performance, especially search-based, highly de-
pends on the quality of the heuristic guiding its exploration
of its solution space. In our targeted problems of Plantrol, we
concentrate on finding plans that optimize for goal achieve-
ment time, which is highly related to makespan (i.e., plan ex-
ecution time). Our heuristic is based on building the relaxed
temporal planning graph (RTPG) and adjusting its estimation
with the potential conflicts with tokens of the previous plan.

For each planing state s, the RTPG estimates the temporal
distance between the current state in the search tree and the
final state that the search algorithm tries to reach. In our FSS
algorithm (Section 2.3), the heuristic estimates the distance
between the current state and the goal state while in the POP
algorithm (Section 2.4), the heuristic estimates the distance
between the current state and the initial state. Given that the
heuristic procedures for both types of planner are very similar,
we will just discuss and give an example for the FSS planner.

Given a timeline set TL representing a state during the plan-
ning process and the goal set G to be achieved, the algorithm
will estimate the finishing time of a shortest plan that achieves
G and built on top of TL (i.e. extends and includes all tokens
in TL). The algorithm starts from the time-stamp t = tTL of

TL and moves forward in a similar fashion to the FSS algo-
rithm described in Section 2.3. However, instead of selecting
which action to add next, we will optimistically apply all ac-
tions that have their conditions satisfied at t and ignore their
conflicts. The neglect of conflicts between overlapping actions
lead to the name “relaxed” temporal planning graph.

When actions with their conditions satisfied at time t are
added, we add the tokens caused by their effects (refer to Sec-
tion 2.1) to the collective pool of tokens that can lead to new
values. At any given moment, we maintain the set D of (opti-
mistically) achievable values, starting with the current values
at tTL in all timelines. After activating all actions having all
of their conditions satisfied at time t and add tokens represent-
ing their effects into TL, we move forward (increase t) to the
earliest end time te of any token in TL and add the new value
achieved by all tokens ending in te to D. We repeat the pro-
cess until either: (1) D contains all values of G; (2) there is no
additional token in S to advance to its end time (and thus there
is no new value to add to D).

3 Applications
Our online temporal planner has been successfully tested on
several applications.
Tightly Integrated Parallel Printer (TIPP): The TIPP
reconfigurable printer design allows building custom recon-
figurable printer configurations from shared components. This
project requires a software controller that can work with any
design and it starts our work in the integrated planning and
control framework. Our first planner built for this application
uses the timeline representation for shared resources and com-
bines it with the non-timeline state representation for logical
variables. The planner works very well and can control two
physical prototypes and hundreds of conceptual designs with

Timeline-based Planning System for Manufacturing Applications

17

Parallel Printer Modular Packaging Material Control System

Figure 6: Example instances of the applications addressed by PARC’s planner

the productivity of up to 220 page-per-minute (which requires
planning/solving time to be less than 0.27 seconds). We have
published extensively for this application [Ruml et al., 2005;
Do et al., 2008; Ruml et al., 2011].

Packaging: After the conclusion of the TIPP project,
we investigated the application of our model-based plan-
ning+control technology to controlling an automated infeeder
for a packaging line of food and consumer packaged goods. In
this system, products arrive continuously at high-speed from
the end of the production line and need to be arranged into a
specific configuration for downstream primary and secondary
packaging machines. In collaboration with a domain expert
from the packaging industry, we developed an innovative
design for a reconfigurable parallel infeed system using
a matrix of interchangeable smart belts. We also adapted
our online model-based Plantrol planner to this domain.
Our planner can control various configurations of the new
infeed system through simulation both in nominal planning
and when runtime failures occur. We are also building a
physical prototype to validate the new design and our software
framework. More details are described in [Do et al., 2011a].

Material Control System: Recently, in early 2010, we
have successfully applied our planning framework to another
application: planning for the Material Control System (MCS)
of Liquid Crystal Display (LCD) manufacturing plant in a
joint project between the Embedded Reasoning Area at PARC
and the Products Development Center at the IHI Corporation.
The model-based planner created at PARC was able to
successfully solve a diverse set of test scenarios provided by
IHI, including those that were deemed very difficult by the
IHI experts. The short project time (2 months) proved that
model-based planning is a flexible framework that can adapt
quickly to novel applications. This the the first project where
the the full timeline based representation, as described in this
paper, was used for the planner. More details on the domain
and the adaptation effort are described in [Do et al., 2011b].

Automated Warehouse: Earlier this year, we collaborated
with IHI again on another project on Automated Warehouse
control3. The adaptation of our planner was able to success-
fully control a very large (few thousand objects) warehouse
system with complex constraints. It consistently found plans

3Due to the proprietary IHI’s warehouse design, we are not able
to reveal the details or show any configuration example.

up to hundreds of actions in less than one second. We hope to
be able to describe the details in the future publication.

4 Conclusion & Future Work
In this paper, we introduce an automated planning framework
for fast online continuous planning applications. The planner
combines timeline-based state representation and action-based
planning algorithms. The result planner has been used suc-
cessfully in several manufacturing applications. We are cur-
rently working on extending both the expressiveness of our
modeling language, adding supports for handling constraints
such as uncertainties, and looking to apply our framework for
even more applications.

References
[Do and Kambhampati, 2003] Minh Do and Subbarao Kambham-

pati. Improving the temporal flexibility of position constrained
metric temporal plans. In Proc. of ICAPS-03, 2003.

[Do et al., 2008] Minh Do, Wheeler Ruml, and Rong Zhou. On-line
planning and scheduling: An application to controlling modular
printers. In Proc. of AAAI08, 2008.

[Do et al., 2011a] Minh Do, Lawrence Lee, Rong Zhou, and Lara
Crawford. Online planning to control a packaging infeed system.
In Proc. of the Twenty-Third Annual Conference on Innovative Ap-
plications of Artificial Intelligence (IAAI-11), 2011.

[Do et al., 2011b] Minh Do, Kazumichi Okajima, Serdar Uckun,
Fumio Hasegawa, Yukihiro Kawano, Koji Tanaka, Lara Craw-
ford, Ying Zhang, and Aki Ohashi. Online planning for a material
control system for liquid crystal display manufacturing. In Proc.
of the 21st International Conference on Automated Planning and
Scheduling (ICAPS-11), 2011.

[Fox and Long, 2003] Maria Fox and Derek Long. PDDL2.1: An
extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20:61–124, 2003.

[Fratini et al., 2008] S. Fratini, F. Pecora, and A Cesta. Unifying
planning and scheduling as timelines in a component-based per-
spective. Archives of Control Sciences, 18(2):231–271, 2008.

[J. Frank, 2000] P. Morris J. Frank, A Jonsson. On reformulating
planning as dynamic constraint satisfaction. In Symposium on Ab-
straction, Reformulation and Approximation, 2000.

[Ruml et al., 2005] Wheeler Ruml, Minh B. Do, and Markus
Fromherz. On-line planning and scheduling for high-speed man-
ufacturing. In Proc. of ICAPS-05, pages 30–39, 2005.

[Ruml et al., 2011] Wheeler Ruml, Minh Do, Rong Zhou, and
Markus Fromherz. On-line planning and scheduling: An appli-
cation to controlling modular printers. Journal of Artificial Intel-
ligence Research, 40:415–468, 2011.

Minh Do, Serdar Uckun

18

Supply Network Coordination by Vendor Managed Inventory – A Mechanism
Design Approach

Péter Egri1, József Váncza1,2

1Fraunhofer Project Center for Production Management and Informatics
Computer and Automation Research Institute, Hungarian Academy of Sciences

Kende u. 13-17, 1111 Budapest, Hungary
2Department of Manufacturing Science and Technology, Budapest University of Technology and Economics

H-1111 Budapest, Egry József u. 1., Hungary

Abstract
The paper studies a generic coordination prob-
lem in supply networks with some retailers and
a single supplier agent. The parties posses pri-
vate information—the retailers on uncertain de-
mand forecasts, the supplier on production costs—
and seek to maximise their own utilities. So as
to design a coordination mechanism that warrants
the satisfaction of all market demand at maximal
social welfare, we model the problem as a non-
cooperative game. By relying on the conceptual
apparatus of mechanism design theory, we provide
an analytical explanation for the widely used ven-
dor managed inventory (VMI) where the respon-
sibility of planning and all the risks of over- and
underproduction are at the supplier. After prov-
ing that under reasonable assumptions a fair shar-
ing of these risks is not possible, we present a
family of coordination mechanisms that are effi-
cient and can be implemented without an individ-
ually existing mechanism. Beyond new managerial
insights—like modelling VMI as a service where
payment should also depend on the accuracy of
information communicated—a novel approach is
provided to handling supply networks consisting of
autonomous agents.

1 Introduction
Supply networks are large and complex systems, charac-
terised by the existence of numerous competitive agents, dy-
namic structures, uncertain knowledge and difficult planning
and decision making problems. The uncoordinated actions in
such a system lead to e.g., suboptimal performance, exempli-
fied in a simple case by the well-known prisoners’ dilemma.
In supply networks the appearance of this phenomenon is
called double marginalisation: since every enterprise concern
their own profit when making decisions, the aggregate bene-
fit is in general lower than if the enterprises were vertically
integrated. This suboptimality also results in waste of mate-
rials, labour, energy, environmental resources and eventually
causes significant financial losses for the enterprises.

In a vertically integrated supply network with multiple re-
tailers and a supplier, centralising the replenishment and in-

ventory management decisions at the supplier side is advanta-
geous compared to the situation where each retailer has to de-
cide individually. This centralisation approach is called risk
pooling, and it is proved to result both in lower overall safety
stocks and in lower average inventory levels [Simchi-Levi et
al., 2000].

In order to use the idea of risk pooling in vertically non-
integrated networks, the vendor managed inventory (VMI)
business model is applied frequently. In VMI the supplier
takes all risks and full responsibility for managing a one-point
inventory, while it has to fulfil the entire demand of the retail-
ers, even if this requires additional costs due to extra capac-
ity usage, overtime, outsourcing, or rush production orders
[Simchi-Levi et al., 2000]. This situation is clearly disad-
vantageous for the supplier, in fact, the main practical reason
underlying VMI is the market power of the retailers, and not
the mutual interest of the partners. Furthermore, since the re-
tailers are not faced with the consequences of an imprecise
forecast directly, they are not inspired to increase their efforts
in accurate forecasting.

Sometimes the retailers have incentives even for distorting
the forecasts. If the performance of the retailers are measured
by the eventual shortage, then they tend to overplan demand
and forward too optimistic plans towards the supplier. On the
other hand, if the retailers are rewarded for overperforming
the plans, then they tend to underestimate the demand. In
both cases, the selfish distortion of information will introduce
additional uncertainty into the demand forecasts, and lead to
higher operational costs.

2 Related Work
Agents provide a natural metaphor for manufacturing in sup-
ply networks, where the knowledge is both incomplete (dis-
tributed) and imprecise (uncertain) [Egri and Váncza, 2007].
Unfortunately, most of the existing multi-agent models as-
sume benevolence—i.e., the agents must implicitly share a
common goal—, which holds in some situations, but cer-
tainly not in a supply chain of autonomous enterprises. Lack
of benevolence can result not only in suboptimal behaviour,
but also in the collapse of the production process, as an earlier
study in decentralised production scheduling showed [Váncza
and Márkus, 2000].

Therefore, the number of deployed multi-agent systems
that are already running in real industrial environments is

19

unsurprisingly small. An other important reason for this is
that in the behaviour of a multi-agent system there is al-
ways an element of emergence which can be a serious bar-
rier to the practical acceptance of agent-based solutions. In-
dustry needs safeguards against unpredictable behaviour and
guarantees regarding reliability, safety and operational per-
formance [Monostori et al., 2006].

Such guarantees can be given by applying the results
of game theory and mechanism design [Rosenschein and
Zlotkin, 1994; Shoham and Leyton-Brown, 2008; van der
Krogt et al., 2008]. For example, the auction theory has al-
ready demonstrated its value with several applications, even
in the electronic markets. This success is mainly due to the
fact that these markets are well-structured with clear, exact
regulations. Where the conditions of control are given by for-
mal rules, introducing the concepts and apparatus of game
theory is a really promising approach. That is why it has
recently become popular for analysing the behaviour of au-
tomated agents operating on the Internet [Dash et al., 2003;
Nisan et al., 2007].

Considering enterprises with own objectives also resulted
in various game theoretic formalisations, both cooperative
and non-cooperative ones. The former approach is taken
for studying coalition formation, stability analysis, bargain-
ing or profit allocation [Nagarajan and Sosic, 2008]. The
non-cooperative models on the other hand, usually apply se-
quential games; especially the use of the principal – agent
model of contracting theory [Laffont, 2001; Salanié, 2005]
is common. In the operational research literature this ap-
proach is called supply chain coordination [Arshinder et al.,
2008]. These researches are usually related to inventory man-
agement in distributed production planning problems. Most
of the works study the distributed version of the one-period
newsvendor lot-sizing problem due to its simple structure; for
a review of newsvedor games we refer to [Cachon and Netes-
sine, 2004].

Two main problems with the majority of the current stud-
ies in the literature are that they (i) consider rather special
production problems lacking generality, and (ii) usually take
only simple concepts from game theory (like e.g., the Stackel-
berg games [Hennet and Arda, 2008]). Both the supply chain
management and the game theory literature have some prac-
tically more relevant results which should be combined and
further studied, such as rolling horizon planning, hierarchi-
cal planning systems, repeated games, equilibrium learning,
Vickrey – Clarke – Groves mechanisms, to name a few. In the
mechanism design theory there are also recent achievements
considering algorithmic issues, such as verification ([Nisan
and Ronen, 2001]), distributed mechanisms ([Shneidman and
Parkes, 2004]) and stochastic problems ([Ieong et al., 2007;
Papakonstantinou et al., 2011]). This paper intends to be a
further step on this way.

The remainder of the paper is organised as follows. In Sec-
tion 3, we model distributed decision making in the supply
network as a mechanism design problem and inspect some
of its properties. We introduce some assumptions into the
model in Section 4, in order to develop practically applicable
efficient coordination mechanisms. In Section 5, we illus-
trate the performance of the VMI compared to the traditional

order-based purchase on a numerical example. Finally, we
conclude the results of this paper and suggest some future re-
search directions.

3 A Mechanism Design Analysis
In this section we formalise the supply network model with n
retailer agents and a supplier agent. For the sake of simplicity,
we assume that the retailers are homogeneous, although this
assumption can be relaxed and the results still remain valid.
Retailer i has some private belief (forecast) about the future
market demand, which is denoted by θi ∈ Θ. Demand is
satisfied by production done at the supplier who has, in turn,
private information about the cost factors. Since the exact
demands ξi ∈ D realise at some later time, only the forecasts
can be considered when creating a production plan denoted
by x ∈ K. If the actual demand does not match the forecast,
then the production will deviate from what was planned. If
the demand was underestimated, new and costly production
is necessary, while overestimation leads to extra, sometimes
even to obsolete inventories. In both cases, the actual costs
incurred are higher than planned. Therefore the production
cost at the supplier is a function of the original production
plan as well as of the realized demands: c ∈ C = { c :
K×Dn → R }, which is a private information of the supplier.
Note that we do not assume that an a priori distribution about
the private information is known by the other agents, i.e., we
regard a situation with strict incomplete information.

According to the classic mechanism design theory, an in-
dependent mediator, the mechanism is required for observing
the agents’ actions, making the decision and after realisation,
transferring the payments among the agents. Some recent de-
velopments aim at omitting the mediator, which possibility
we also will study in the next section. For the moment, let
us define the mechanism as M = (f, t1, . . . , tn, ts), where
f : Θn × C → K is the choice function determining the
production plan based on the forecasts and the cost function1,
ti : Θn × C × Dn → R are the payment functions of the
retailers (i = 1, . . . , n), and ts : Θn × C × Dn → R is the
payment for the supplier.

Note two assumptions of this formulation. Firstly, this is a
direct-revelation mechanism, i.e., the strategy of the agents is
to share their private information (not necessarily truthfully)
with the mediator. Secondly, we consider that the realised
demands are commonly observable.

After the demands realise, an income arises at each retailer
i from the sales: vi : D → R. Now we can define the utility—
the income minus the cost—for each retailer and the supplier:

ui(θi, θ̂, ĉ, ξ) = vi(ξi)− ti(θ̂, ĉ, ξ) (1)

and
us(c, θ̂, ĉ, ξ) = ts(θ̂, ĉ, ξ)− c(f(θ̂, ĉ), ξ) (2)

respectively, if their private information is θi and c, but they
claim θ̂i and ĉ instead, with θ = (θ1, . . . , θn) and ξ =
(ξ1, . . . , ξn) denoting the forecast and demand vectors. (The

1Although the production planning problem is complex in gen-
eral, in this paper we disregard computational issues, and assume
that an optimal plan can be found for every possible forecast.

Péter Egri, Jozsef Váncza

20

first parameters of the utility functions are the real private in-
formation, the second and third are the communicated param-
eters, and the last one is the realised demand.)

market

�� �i �n

ˇ

�n

ˇ

�i

ˇ

�1
t1

tnti

ˇ

cts

v1 vnvi

f(

ˇ

�,

ˇ

c)

�� �i �n

c

retailers

supplier

mechanism

Figure 1: Mechanism design setting.

Figure 1 illustrates this mechanism design model, where
the dashed arrows denote information flow, while the solid
ones represent the monetary payments. The variables and
functions inside the agents are private knowledge of the given
agent and are unobservable for the others.

We are seeking such a mechanism, wherewith the perfor-
mance of the production network as a whole is optimal. This
can be guaranteed, if all the agents disclose their private infor-
mation truthfully, and the mechanism uses an optimal plan-
ning choice function. Let us define these properties formally.

Definition 1 A mechanism M is (weakly) strategy-proof, if
truth telling is a dominant strategy for every agent, i.e., it
maximizes their expected utility: ∀i,∀θi ∈ Θ,∀θ̂ ∈ Θn,∀ĉ ∈
C :

Eθ̃[ui(θi, θ̃, ĉ, ξ)] ≥ Eθ̃[ui(θi, θ̂, ĉ, ξ)], (3)

where θ̃ = (θ̂1, . . . , θ̂i−1, θi, θ̂i+1, . . . , θ̂n), and ∀c, ĉ ∈
C,∀θ̂ ∈ Θn :

Eθ̂[us(c, θ̂, c, ξ)] ≥ Eθ̂[us(c, θ̂, ĉ, ξ)]. (4)

Definition 2 The choice function f is efficient, if it max-
imises social welfare (the sum of the utilities without the pay-
ments), i.e., ∀θ ∈ Θn,∀c ∈ C :

f(θ, c) ∈ argmax
x∈K

Eθ[
∑

vi(ξi) − c(x, ξ)]

= argmin
x∈K

Eθ[c(x, ξ)]. (5)

Firstly, we show that if a strategy-proof mechanism gives
the same output for different cost functions, then it is ex-
pected to give the same payment to the supplier.

Proposition 1 If M is a strategy-proof mechanism, c, ĉ ∈
C, θ ∈ Θn such that f(θ, c) = f(θ, ĉ), then Eθ[ts(θ, c, ξ)] =
Eθ[ts(θ, ĉ, ξ)].

Proof Let us assume that Eθ[ts(θ, c, ξ)] < Eθ[ts(θ, ĉ, ξ)]
(the other direction is analogous). But then

Eθ[ts(θ, c, ξ)]− Eθ[c(f(θ, c), ξ)] < Eθ[ts(θ, ĉ, ξ)]
− Eθ[c(f(θ, ĉ), ξ)], (6)

i.e., the mechanism is not strategy-proof, since the supplier
with cost function c would reveal ĉ instead. �

We now prove that if we are looking for an efficient
strategy-proof mechanism, then ts should be (in the sense
of expected value) independent from the cost function of the
supplier, therefore it excludes the possibility of cost sharing
among the agents.

Theorem 2 Let M be an efficient, strategy-proof mecha-
nism. Then

∀θ ∈ Θn,∀c, ĉ ∈ C : Eθ[ts(θ, c, ξ)] = Eθ[ts(θ, ĉ, ξ)]. (7)

Proof The proof is similar to the proof of the uniqueness of
Groves mechanism among efficient and strategy-proof mech-
anisms proved by [Green and Laffont, 1977], thus we exploit
that the cost function can be arbitrary.

Let us consider a fixed θ, and indirectly assume that
the statement of the theorem is false: ∃c, ĉ ∈ C :
Eθ[ts(θ, c, ξ)] > Eθ[ts(θ, ĉ, ξ)]. Furthermore, let us define

ε = Eθ[ts(θ, c, ξ)]− Eθ[ts(θ, ĉ, ξ)] > 0. (8)

Due to the modus tollens of Proposition 1, f(θ, c) 6=
f(θ, ĉ). Because the cost function can be arbitrary, ∃c̃ ∈
C, ∃k ∈ R :

Eθ[c̃(f(θ, ĉ), ξ)] = k (9)
Eθ[c̃(x, ξ)] > k ∀x 6= f(θ, ĉ) (10)

Eθ[c̃(f(θ, c), ξ)] < k + ε. (11)

From the efficiency of the mechanism follows that
f(θ, c̃) = f(θ, ĉ), and then from Proposition 1, we have
Eθ[ts(θ, c̃, ξ)] = Eθ[ts(θ, ĉ, ξ)]. But then

Eθ[us(c̃, θ, c̃, ξ)] = Eθ[ts(θ, c̃, ξ)]− Eθ[c̃(f(θ, c̃), ξ)]

= Eθ[ts(θ, ĉ, ξ)]− k, (12)

and

Eθ[us(c̃, θ, c, ξ)] = Eθ[ts(θ, c, ξ)]− Eθ[c̃(f(θ, c), ξ)]

> Eθ[ts(θ, c, ξ)]− k − ε
= Eθ[ts(θ, ĉ, ξ)]− k, (13)

thus the mechanism is not strategy-proof. �
The theorem proves the reasonable conjecture that the sup-

plier can claim higher costs in such a way, that the optimal
production plan does not change. Thus, the supplier may try
to obtain more payment without increasing its costs.

4 Coordination Mechanisms for Supply
Networks

Although Theorem 2 is rather negative if we are aimed at fair
cost sharing, it has some positive consequences as well that

Supply Network Coordination by Vendor Managed Inventory – A Mechanism Design Approach

21

we analyse in this section. Our main goal is to omit the neces-
sity of an independent mediator which is unrealistic in a sup-
ply network, but at the same time, to preserve the favourable
properties of the system. In what follows, we dissolve the
two reasons for the existence of an independent mechanism:
balancing the difference between the agents’ payments and
providing efficiency.

From now on, we assume that the payment of the supplier
is independent from its revealed cost function—explained by
the conclusions of Section 3—, and the next definition neces-
sitates that the payments of the retailers are also independent
from ĉ.

Definition 3 A mechanismM is budget-balanced, if

∀θ̂ ∈ Θn,∀ξ ∈ Dn : ts(θ̂, ξ) =
∑

ti(θ̂, ξ), (14)

i.e., there is no surplus or deficit for the mechanism, the total
payment is distributed among the agents.

Note that requiring budget-balance excludes the appli-
cation of the Vickrey – Clarke – Groves (VCG) mechanisms
which is one of the main positive results of the classic mech-
anism design theory, and it is also frequently applied for solv-
ing algorithmic problems [Nisan et al., 2007].

A direct corollary of the independence of ts from ĉ is that
the supplier agent can maximise its utility by minimising its
cost. This means that the efficiency of the mechanism corre-
sponds with the supplier’s interest, therefore the mechanism
can be implemented by the supplier without requiring an in-
dependent mediator. There is no need to disclose its private
information about the costs, and furthermore, even the spe-
cific planning algorithm and the resulted plan can be kept se-
cret. In fact, this property is the essence of VMI.

In order to provide strategy-proofness, truth telling should
be the dominant strategy for each retailer, independently from
the decision and realised demand of the other retailers. Since
the income is independent from the disclosed information, the
utility is maximal when the payment is minimal.

Firstly, let us consider a trivial example for illustration,
when the forecast is simply the expected value of the demand.
In this case it is easy to see that for example the payment func-
tion in the form

ti(θ̂, ξ) = αi|θ̂i − ξi|+ βi(θ̂−i, ξ), (15)

where αi > 0 is a constant, βi is an arbitrary function and
θ̂−i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂n), is appropriate, since the
first term is expected to be minimal when θ̂i = E[ξi], and the
second term is independent from θ̂i.

If βi(θ̂−i, ξ) depends on θ̂j and ξj (j 6= i), this allows some
profit sharing between the retailers, but requires cooperation
between them. Otherwise βi(θ̂−i, ξ) = γi(ξi) with some ar-
bitrary γi function, and the retailers’ profits are independent
from each other. In this case, γi(ξi) practically can be con-
sidered as the payment for the supplied products, while αi
defines the price of the flexible VMI service.

When the forecast becomes more complex, it is not
straightforward to guarantee strategy-proofness. If for ex-
ample we refine the previous model assuming the forecast
is given by the expected value and the standard deviation,

the task becomes more interesting. The difference between
the expected and realised demand can be easily measured,
but how can we estimate the accuracy of the standard devi-
ation based only on one observation? In the following, we
answer this question by presenting a strongly strategy-proof
payment, which is a generalisation of the result published in
[Egri, 2008], without assuming any particular distribution of
the demand. Due to the lack of space, we omit the proof
which is analogous to the one presented in the previously
mentioned thesis.

Theorem 3 Let us consider a one-period supply coordina-
tion network problem, where the forecasts are given by the ex-
pected values and the standard deviations, i.e., θi = (mi, σi).
Then the payment function in the form

ti(m̂, σ̂, ξ) = αi

(
(m̂i − ξi)2

σ̂i
+ σ̂i

)
+ βi(m̂−i, σ̂−i, ξ),

(16)
where αi > 0 is a constant and βi is an arbitrary function, is
strongly strategy-proof.

One can notice the similarity between this payment and the
payment defined by Eq. (15). Furthermore, there is a simple
intuition behind the term (m̂i − ξi)

2/σ̂i + σ̂i: if a retailer
states that the forecast is fairly precise (i.e., σi is small), it is
ready to pay larger compensation for the difference between
the expected and the realised demand. This could be avoided
by stating higher uncertainty, but then this increases the sec-
ond part of the term.

Such one-period problems are widely studied in the sup-
ply chain coordination literature due to their simple structure,
however, in several practical cases they cannot be properly
applied. In industrial problems involving longer horizons,
usually some medium-term, discrete forecasts are used; in
addition, the forecasts are often updated from time to time,
on a rolling horizon. These more realistic cases can be ap-
proached in a similar way as the one-period problem: besides
the payment for the products (the “β-part” of the payment),
the imprecision of the forecast should be measured and used
as the basis for the payment of the VMI service (“α-part”).
For example, in [Váncza et al., 2008] we present a strongly
strategy-proof payment scheme for the multi-period, rolling
horizon case with uncertain length of product life-cycle.

All in all, with VMI the supplier not only offers products,
but also flexibility as a service. Accordingly, a composite
payment function should be constructed: the retailers must
pay not only (i) for the quantity delivered, but also (ii) for the
deviation from the forecast, as well as (iii) for the uncertainty
of the forecast. This payment compensates the supplier for
the eventual obsolete inventory or the cost of extra production
exceeding its original production plan.

5 Computational Study
In this section we illustrate on a simple example how an effi-
cient strategy-proof mechanism can improve the performance
of a supply network. We consider n retailers, and we assume
that the ξi demands are independent and normally distributed
with expected values mi and standard deviations σi.

Péter Egri, Jozsef Váncza

22

Firstly, we examine a suboptimal solution, where the re-
tailers make firm orders m̂i and pay a w1 wholesale price for
the supplied goods. When the ξi demand realises, either some
surplus remain at retailer i, or it has to order again, but due
to the urgency, on a higher w2 price. The supplier works in
make-to-order mode, i.e., it produces the normal orders with
c1 piecewise cost, and the urgent orders on a higher c2 cost.
Formally, this can be expressed as follows:

ti(m̂, σ̂, ξ) = w1m̂i + w2 max(ξi − m̂i, 0), (17)

and the emerging cost at the supplier becomes

c(ξ) = c1
∑

m̂i + c2
∑

max(ξi − m̂i, 0). (18)

One can derive that in this newsvendor-like case the opti-
mal order quantity is

m̂i = F−1i (1− w1

w2
), (19)

where Fi is the cumulative density function (CDF) of ξi, thus
the optimal order quantity is not even equal with the expected
demand.

However, if one applies a mechanism with a payment de-
fined by Eq. (16), then the retailers truthfully reveal their pri-
vate information about the expected values and standard de-
viations of the demand forecasts. Now, the expected value of
the total demand will be the sum of the expected values, and
since the demands are considered to be independent, the stan-
dard deviation of the total demand becomes

√∑
σ2
i . Further-

more, if the demand at the retailers are normally distributed,
the distribution of the total demand will also be normal, there-
fore the optimal production quantity and cost are

x = F−1(1− c1
c2

) (20)

and
c(x, ξ) = c1x+ c2 max(

∑
ξi − x, 0), (21)

where F is the CDF of the total demand.
Figure 2 illustrates the difference between the costs of the

two approaches, depending on the number of retailers. We
set the price parameters as c1 = 50, c2 = 80, w1 = 135,
and w2 = 165. The expected value and standard deviation
of the total demand was set to m = 800 and σ = 100, and
we considered retailers with identical distributions, therefore
their parameters were mi = m/n and σi = σ/

√
n. Each

cost value indicated on the figure is an average made on 5000
simulation runs.

As it can be seen, the coordinated VMI is more efficient
than the order-based supply even in the one retailer case due
to the elimination of the double marginalisation. However,
when the number of the retailers increases, risk pooling keeps
the optimality in the network, while the uncoordinated ap-
proach quickly deviates from cost efficient performance.

6 Conclusions and Further Work
In this paper we studied networks of autonomous retailers
and a supplier, where the utilities depend on a stochastic mar-
ket demand whose distribution is not known by the decision

1 2 3 4 5 6 7 8 9 10
n

44 000

46 000

48 000

50 000

c

VMI

Orders

Figure 2: The cost in function of the number of retailer
agents.

maker. The basic assumptions of our model are rooted in sup-
ply chain coordination models, specifically, we departed from
the vendor managed inventory where demand anticipated and
communicated by the retailer drives production planning at
the supplier. The analysis was aimed at elaborating a di-
rect revelation mechanism that maximizes overall utility, even
though the partners are rational, expected utility maximising
decision makers. The coordination problem called also for a
budget-balancing solution. Furthermore, we were interested
in finding an answer to a crucial question in supply chain co-
ordination: the sharing of costs and profits. Due to the private
information of the players, the traditional distribution meth-
ods of cooperative game theory were not applicable.

Firstly, we formulated a mechanism design model with the
inherent incomplete information about the forecasted demand
and production costs. We proved that in any mechanism that
is efficient and where truth-telling is a dominant strategy for
each player, the payment for the supplier’s production efforts
should be independent from its actual cost. Hence, this result
excludes in general the possibility of sharing costs in a fair
way among the agents.

Next, we presented a specific coordination mechanism that
was efficient, budget-balanced and strategy-proof. The man-
agerial insight behind these results is that VMI should be in-
terpreted as a service provided by the supplier. In turn, the
retailer’s payment for this service should depend on the ac-
curacy of the information it shares with the supplier. For the
practical applicability, the mechanism requires (i) no new me-
diator party, and (ii) no new information exchange channels,
however, it implies that (i) new innovative business models,
(ii) efficient local planning at the supplier, and (iii) improved
forecasting of market demands are essential.

Negative consequences of Theorem 2 are not entirely dis-
couraging, though. By relaxing assumptions of our model in
various ways, a number of open questions emerge, together
with new opportunities for the application of mechanism de-
sign in supply chain management. In this paper we assumed
that the entire demand should be fulfilled. One can study the
situation when lost sales are allowed, in which case Theo-
rem 2 holds no more. Furthermore, one may also study such
mechanisms that are only approximately efficient.

Supply Network Coordination by Vendor Managed Inventory – A Mechanism Design Approach

23

Of course, not only the VMI supply scheme is important;
the traditional order-based procurement can also be analysed
by means of the mechanism design theory. In such cases ne-
gotiation processes—possibly in an automated way between
enterprise information systems—could be developed for sup-
porting decentralised decision making. This approach, how-
ever, cannot skip considering computational issues any more
[Nisan and Ronen, 2001]. We made a first step in this di-
rection in [Egri et al., 2011], where we presented a simple
protocol aimed at improving benefits both for a manufacturer
and its supplier, without guaranteeing strict optimum.

Finally, a further goal is extending the two-echelon games
and handling more complete supply networks. In such cases,
achieving global optima through coordination is out of ques-
tion due to the complexity of the interconnections, the local
planning problems to be solved, as well as the dynamic be-
haviour of the network. Nevertheless, the analytic approach
can help estimate the theoretic bounds of the system, and
measure the performance gap between results of approximate
optimisations and the theoretical global optimum.

Acknowledgements
This work has been supported by the Hungarian Scientific
Research Fund OTKA No. T73376 and the National Office
for Research and Technology OMFB No. 01638/2009 grants.

References
[Arshinder et al., 2008] Arshinder, A. Kanda, and S.G.

Deshmukh. Supply chain coordination: Perspectives, em-
pirical studies and research directions. International Jour-
nal of Production Economics, 115(2):316–335, 2008.

[Cachon and Netessine, 2004] G.P. Cachon and S. Netes-
sine. Game theory in supply chain analysis. In D. Simchi-
Levi, S.D. Wu, and Z-J. Shen, editors, Handbook of Quan-
titative Supply Chain Analysis: Modeling in the eBusiness
Era, pages 13–66. Kluwer, 2004.

[Dash et al., 2003] R.K. Dash, N.R. Jennings, and D.C.
Parkes. Computational mechanism design: A call to arms.
IEEE Intelligent Systems, 18:40–47, 2003.

[Egri and Váncza, 2007] P. Egri and J. Váncza. Cooperative
production networks – multiagent modeling and planning.
Acta Cybernetica, 18(2):223–238, 2007.

[Egri et al., 2011] P. Egri, A. Döring, T. Timm, and
J. Váncza. Collaborative planning with benefit balanc-
ing in Dynamic Supply Loops. CIRP Journal of Man-
ufacturing Science and Technology, 2011. In print, doi:
10.1016/j.cirpj.2011.05.002.

[Egri, 2008] P. Egri. Coordination in Production Networks.
PhD thesis, Eötvös Loránd University, Budapest, 2008.

[Green and Laffont, 1977] J. Green and J-J. Laffont. Charac-
terization of satisfactory mechanisms for the revelation of
preferences for public goods. Econometrica, 45(2):427–
438, 1977.

[Hennet and Arda, 2008] J-C. Hennet and Y. Arda. Supply
chain coordination: A game-theory approach. Engineering
Applications of Artificial Intelligence, 21:399–405, 2008.

[Ieong et al., 2007] S. Ieong, A. Man-Cho So, and M. Sun-
dararajan. Stochastic mechanism design. In Proceedings
of the 3rd International Conference on Internet and Net-
work Economics, pages 269–280, 2007.

[Laffont, 2001] D. Laffont, J-J.and Martimort. The Theory
of Incentives : The Principal-Agent Model. Princeton Uni-
versity Press, 2001.

[Monostori et al., 2006] L. Monostori, J. Váncza, and S.R.T.
Kumara. Agent-based systems for manufacturing. CIRP
Annals–Manufacturing Technology, 55(2):697–720, 2006.

[Nagarajan and Sosic, 2008] M. Nagarajan and G. Sosic.
Game-theoretic analysis of cooperation among supply
chain agents: Review and extensions. European Journal
of Operational Research, 187(3):719–745, 2008.

[Nisan and Ronen, 2001] N. Nisan and A. Ronen. Algorith-
mic mechanism design. Games and Economic Behavior,
35(1-2):166–196, 2001.

[Nisan et al., 2007] N. Nisan, T. Roughgarden, E. Tardos,
and V.V. Vazirani. Algorithmic Game Theory. Cambridge
University Press, New York, NY, USA, 2007.

[Papakonstantinou et al., 2011] A. Papakonstantinou,
A. Rogers, E.H. Gerding, and N.R. Jennings. Mechanism
design for the truthful elicitation of costly probabilistic
estimates in distributed information systems. Artificial
Intelligence, 175(2):648–672, 2011.

[Rosenschein and Zlotkin, 1994] J.S. Rosenschein and
G. Zlotkin. Rules of Encounter: Designing Conventions
for Automated Negotiation among Computers. MIT Press,
Cambridge, MA, USA, 1994.

[Salanié, 2005] B. Salanié. The Economics of Contracts: A
Primer, 2nd Edition. The MIT Press, 2005.

[Shneidman and Parkes, 2004] J. Shneidman and D.C.
Parkes. Specification faithfulness in networks with
rational nodes. In Proceedings of the 23rd Annual ACM
Symposium on Principles of Distributed Computing,
pages 88–97, 2004.

[Shoham and Leyton-Brown, 2008] Y. Shoham and
K. Leyton-Brown. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge
University Press, 2008.

[Simchi-Levi et al., 2000] D. Simchi-Levi, P. Kaminsky, and
E. Simchi-Levi. Designing and Managing the Supply
Chain: Concepts, Strategies, and Cases. McGraw – Hill,
New York, 2000.

[van der Krogt et al., 2008] R. van der Krogt, M. de Weerdt,
and Y. Zhang. Of mechanism design and multiagent plan-
ning. In Proceeding of the 18th European Conference on
Artificial Intelligence (ECAI 2008), pages 423–427, 2008.

[Váncza and Márkus, 2000] J. Váncza and A. Márkus. An
agent model for incentive-based production scheduling.
Computers in Industry, 43:173–187, 2000.

[Váncza et al., 2008] J. Váncza, P. Egri, and L. Monostori.
A coordination mechanism for rolling horizon planning in
supply networks. CIRP Annals – Manufacturing Technol-
ogy, 57(1):455–458, 2008.

Péter Egri, Jozsef Váncza

24

Abstract
In the light of a high division of labor, decentra-
lized coordination shows major importance in to-
day’s production and logistics networks and hence
is subject to current supply chain management
(SCM) research. Especially collaborative planning
concepts promise to meet the specific requirements
imposed by heterarchical supply chains. This paper
demonstrates the multi-agent based modeling and
information system-implementation of one con-
crete collaborative planning concept, namely the
collaborative demand and capacity network plan-
ning approach. The paper’s intention is to substan-
tiate the suitability of multi-agent concepts in de-
centralized SCM and to strengthen the motivation
to combine multi-agent and SCM research.

1 Motivation and Problem Description
Today, producing companies are facing a highly dynamic
competitive environment which requires effective and effi-
cient business processes in order to meet customer needs
adequately. Measures like the concentration on core compe-
tencies aiming at this issue have led to a high division of
labor and hence a growing number of legally independent
participants in the process of providing products to the ulti-
mate customer. The resulting inter-organizational network –
commonly denoted as supply chain (SC) – consists of sev-
eral autonomous companies which cannot necessarily be
forced to follow decisions or plans of a superordinate unit.
Thus, coordination in such SCs cannot be achieved in the
same way as in hierarchical organizations which can be
controlled by one dominant actor.

Coordination mechanisms for hierarchical SCs have been
researched intensely, resulting in the development and prac-
tical application of sophisticated supply chain management
(SCM) methods, e.g. implemented in advanced planning
systems. However, these hierarchical coordination ap-
proaches cannot be applied to heterarchical SCs due to the
aforementioned decision autonomy of SC actors, combined
with the unwillingness to share sensitive private informa-
tion. Furthermore, companies are generally involved in
several networks with conflicting claims, e.g. on a compa-

ny’s resources, which makes central hierarchical plans inap-
propriate (for details see for example [Breiter et al., 2009]).

Several approaches in current SCM research address the
aspects and peculiarities of heterarchical SCs in the devel-
opment of adequate coordination mechanisms (for an over-
view cf. [Breiter et al., 2009], [Stadtler, 2009]). Especially
approaches in the domain of collaborative planning (CP)
promise to meet the requirements imposed by heterarchical
SCs with respect to decision autonomy and privacy of in-
formation. These coordination mechanisms intend to over-
come the restrictions of traditional hierarchical planning
concepts regarding the practical applicability in heterarchic-
al SCs, while simultaneously improving the SC’s perfor-
mance compared to the uncoordinated situation being
present in successive planning approaches.

With respect to the representation and information system
(IS) based implementation of suchlike decentralized coordi-
nation mechanisms, multi-agent systems (MAS) promise to
meet the specific requirements induced by heterarchical
structures (cf. [Breiter et al., 2009]). Heterarchical SCs
consist of several autonomous actors following their own
objectives while being interdependent and linked by physi-
cal, financial and informational flows. Thus, interactions
between autonomous companies are a major constituent in
such networks. MAS provide a natural metaphor for the
representation of suchlike complex systems (cf. [Moyaux et
al., 2006]) and a technological basis to handle interactions
between the SC actors. The suitability of MAS in SCM is,
for example, discussed in [Moyaux et al., 2006]. Conse-
quently, MAS provide an elaborate means to represent and
implement CP approaches in IS.

This paper presents one concrete multi-agent based mod-
eling and IS-implementation of a CP coordination concept,
the collaborative Demand and Capacity Network Planning
(DCNP) (cf. [Hellingrath and Hegmanns, 2010]). This ap-
proach is suitable for coordinating demanded and offered
capacities in built-to-order (BTO) production and logistics
networks as existent e.g. in the automotive industry. These
SCs are characterized by a huge number of configurable
product variants and hence large parts of these SCs –
spreading the planning domains of several autonomous
companies – follow a BTO production strategy.

On the one hand, the intention of this paper is to demon-
strate and substantiate the suitability of MAS concepts in

Multi-Agent Based Collaborative Demand and Capacity Network Planning in
Heterarchical Supply Chains

Bernd Hellingrath and Peer Küppers
Chair for Information Systems and Supply Chain Management

WWU Münster
Leonardo-Campus 3, 48149 Münster, Germany

{Bernd.Hellingrath, Peer.Kueppers}@ercis.uni-muenster.de

25

the context of SCM by applying them to the DCNP ap-
proach. On the other hand, the presented results are embed-
ded into a more general research on an MAS-based frame-
work for modeling and evaluating arbitrary CP mechanisms
called the Framework for Intelligent Supply Chain Opera-
tions (FRISCO, cf. [Hellingrath et al., 2009]). The described
MAS-based modeling and evaluation of the collaborative
DCNP concept therefore constitutes a demonstration of
parts of the research on FRISCO.

The paper is structured as follows. Chapter 2 provides an
introduction to the collaborative DCNP coordination me-
chanism. Here, the general idea, intra-organizational plan-
ning and inter-organizational interaction and negotiation
processes are presented. In chapter 3 the MAS-based model-
ing of this CP concept is presented. A short introduction to
the FRISCO framework (especially its MAS-based model-
ing component) is provided and the respective MAS-models
of the collaborative DCNP are described. Chapter 4 pro-
vides details on the proof-of-concept implementation of this
coordination mechanism. The implementation is based on
the developed MAS-models, i.e. a model-driven develop-
ment (MDD) approach is followed. The paper concludes
with chapter 5, providing an evaluation of the development
results and giving an outlook on future research to be con-
ducted in this context.

2 Collaborative Demand and Capacity Net-
work Planning

The performance of today’s SCs is not determined by a
single enterprise’s activities, but relies on the whole net-
work’s effectiveness and efficiency due to the high division
of labor. Current practices show that long-term contracts
specify relatively fixed performance agreements between
the network’s actors, e.g. with respect to the provision of
capacity (cf. [Schuh, 2006]). These agreements show a
certain inflexibility in the case of demand variations, leading
to unsatisfied demand and/or inefficiencies in the production
processes due to capacity under-utilization. These aspects
are a major issue in BTO production and logistics networks
which simultaneously require on time demand fulfillment as
well as cost efficient production processes. In case of de-
mand variations, an over- or under-utilization of contrac-
tually agreed capacities is likely to occur, leading to late
deliveries or inefficient capacity utilization.

The collaborative DCNP concept aims at solving this is-
sue by providing mechanisms to improve the match between
demanded and required capacity in inter-organizational
BTO production and logistics networks. Three kinds of SC
actors that can participate in the coordination mechanism
are distinguished: build-to-stock (BTS) suppliers constitute
the upstream “ends”, original equipment manufacturers
(OEM) the downstream “ends” of the coordinated SC. BTO
suppliers are intermediaries which source from BTS (or
BTO) suppliers and supply OEMs (or other BTO suppliers).
The concept is based on the idea of CP and hence coordina-
tion is achieved by mutual agreement between these actors

without the revelation of private information and loss of
local decision autonomy.

On the one hand, the planning concept requires perfor-
mance agreements between companies which specify the
planned capacity provided from a supplier to its customer in
the mid-term planning horizon. On the other hand, the con-
cept defines procedures that automatically identify and solve
conflict situations, i.e. detect capacity shortages and help to
overcome them by a decentralized adaptation of network-
wide plans (cf. Figure 1). Demand for capacity is monitored
at each stage for each supplier and compared to the pre-
viously specified performance agreements in order to be
able to identify violations of the agreed capacity corridors.

Besides monitoring the performance agreements, the col-
laborative DCNP concept defines inter-organizational pro-
cedures to resolve occurring contract violations. These pro-
cedures are intended to be performed automatically in order
to achieve a network-wide, mutually agreed adaptation of
capacities to the current demand situation. The concept
achieves this decentralized coordination via bilateral negoti-
ations between the actors on multiple stages of the network.
The automated negotiations contain the exchange of re-
quests and responses regarding adaptations of plans, i.e.
performance agreements, and invoke several local planning
processes in order to determine the adaptions’ effects on an
actor’s local plans. Compensation payments for the reserva-
tion of additional or cancellation of unnecessary capacities
provide a means for the acceptance of locally unfavorable
plans. Thus, incentives for participation are integrated into
this coordination mechanism, i.e. globally (SC-wide) prefer-
able plans can be achieved in the collaborative DCNP con-
cept.

Figure 1: Inter-organizational planning in the collaborative DCNP
concept (cf. [Hellingrath and Hegmanns, 2010])

The inter-organizational planning processes adjust the bi-
lateral performance agreements continuously to the current
demand situation by solving the aforementioned capacity
agreement violations. This coordination process involves
multiple rounds of planning and negotiating in order to
achieve a network-wide feasible and agreed plan. The high-
level description of the collaborative DCNP intra- and inter-
organizational processes is depicted in Figure 1.

Bernd Hellingrath, Peer Küppers

26

As discussed in chapter 1, MAS provide the concepts to
represent the heterarchical network structure, the interaction
processes and the information flows between the different
SC participants in the described collaborative DCNP ap-
proach. Furthermore, they provide a technological basis to
implement the coordination concept in an IS. Thus, the next
chapter describes a conceptual model of the collaborative
DCNP in a multi-agent based modeling language. Following
the concept of MDD, this model provides the basis for the
IS-implementation of the collaborative DCNP approach
which is presented in chapter 4.

3 Multi-Agent Based Model of the Collabora-
tive DCNP Concept

The collaborative DCNP concept shows the characteristics
of CP and hence it provides a reference that can be used to
exemplary evaluate the FRISCO framework into which the
results of this paper are embedded. The general idea of
FRISCO is to provide an environment that allows modeling
and evaluating decentralized coordination mechanisms –
especially CP concepts – for arbitrary heterarchical SCs.
The ultimate goal of this research is to pave the way for
suchlike coordination mechanisms from primarily being a
research domain to practical applications in real SCs. Basi-
cally, the framework consists of two parts: a modeling and
an evaluation environment for CP coordination mechan-
isms. Due to the aforementioned suitability for heterarchical
SCs and CP, FRISCO is based on MAS concepts. In order
to be able to efficiently cope with differently shaped CP
mechanisms beyond the mere modeling, an approach in
analogy to MDD was chosen. The goal is to provide an
environment that allows modeling the complex structures
and processes of CP concepts and furthermore to use these
models in order to automatically create executable code for
an evaluation of the CP approaches in different scenarios.

Modeling MAS and the automated transformation of
models to executable code has been researched intensely in
the MAS context and several approaches have evolved (for
an overview see e.g. [Nunes et al., 2009]). For the proof-of-
concept implementation of the collaborative DCNP coordi-
nation approach, the DSML4MAS domain specific model-
ing language (cf. [Hahn et al., 2009]) was chosen. This
language provides the required concepts for a representation
and implementation of CP approaches, especially with re-
spect to the graphical definition of complex interaction
protocols required by CP and especially the collaborative
DCNP approaches.

The abstract syntax of this modeling language is de-
scribed by an agent-platform independent metamodel called
PIM4Agents (cf. [Hahn et al., 2009]). The concrete syntax
of this modeling language has been specified and imple-
mented by means of the Eclipse Modeling Framework
(EMF), i.e. graphical modeling of complex MAS is sup-
ported by the DSML4MAS environment. Furthermore,
translation rules have been defined transforming conceptual
models to executable code which can be run on the FIPA
compliant MAS platform JADE.

The DSML4MAS relies on several views on the different
aspects of MAS (for details see [Hahn et al., 2009]). By
means of these views, the DSML4MAS development envi-
ronment provides all concepts that are required to formally
model the collaborative DCNP approach. All required views
were developed and instantiated in order to model the con-
cept. The most important models that describe the CP con-
cept are depicted in the following.

As mentioned in chapter 2, collaborative DCNP distin-
guishes three types of actors (BTS/BTO suppliers and
OEM) that can participate in the coordination mechanism.
Transferred to the MAS model in DSML4MAS, these are
represented by three agents in the so called “agent view” (cf.
Figure 2). The collaborative DCNP coordination mechanism
relies on two roles that can be taken on by its participants:
Supplier and Customer. These roles are reflected in the
agent view by permitting the agent types to act in the re-
spective role. The OEM determines the downstream “end”
of the production network and is therefore only permitted to
act as a Customer. Analogously, upstream the BTS supplier
constitutes the last actor in the coordinated part of the SC,
i.e. is only permitted to be a Supplier. The multi-tier support
of the collaborative DCNP concept is facilitated by allowing
BTO suppliers to act as both, Suppliers and Customers.
Besides the assignments between agents and roles, the agent
view is furthermore used to define plans that can be used by
the agents, i.e. it allows for modeling the internal agent
behavior. Plans that are directly connected to an agent via a
uses relation are triggered in the instantiation phase. Thus,
the agent diagram depicted in Figure 2 shows the startup
plans that initialize the agents’ data structures. Besides these
three plans, the agent diagram contains a multitude of plans
that describe the agents’ local behavior throughout the col-
laborative DCNP concept (not depicted in Figure 2).

Figure 2: Agent view on the collaborative DCNP concept (excerpt)

The next step in modeling the collaborative DCNP con-
cept is the definition of interactions that can take place in
the MAS, i.e. in this case between the Customer and Suppli-
er roles. This requires the assignment of the two roles to an
organizational structure, which is modeled by an organiza-
tion called OrganizationDCNP in the “MAS view” (see
Figure 3, left). The OrganizationDCNP represents one stage
of the SC being coordinated by the collaborative DCNP
concept. Modeling the organization is the prerequisite for
the definition of interaction mechanisms taking place in the
organization as the participating roles are defined. Besides

Supplier Customer

uses uses uses

permittedTo
permittedTo permittedTo

permittedTo

AgentBTSSupplier AgentBTOSupplier

P StartUpBTS P StartUpBTO P StartUpOEM

AgentOEM

Multi-Agent Based Collaborative Demand and Capacity Network Planning in Heterarchical Supply Chains

27

the organizational assignment, the MAS view also contains
a definition of the environment (not depicted in Figure 3),
especially containing descriptions of the messages being
communicated in the MAS.

Figure 3: MAS (left) and organization (right) views (excerpts)

Besides the MAS view, an “organization view” is re-
quired to define which interactions can be performed within
the organization i.e. one stage of the SC. In the collaborative
DCNP case, these interactions are modeled by a protocol
called DCNPProtocol – described in detail below – which
contains all communication steps of the coordination me-
chanism (cf. Figure 1). Therefore, a uses relation between
the OrganizationDCNP and the DCNPProtocol is modeled
in the organization view in order to allow the application of
this protocol to the different stages of the SC being coordi-
nated (cf. Figure 3, right).

Following the inter-organizational communication de-
fined in the collaborative DCNP concept, the DCNPProto-
col can be divided into three major phases: communication
of plans, conflict identification and the reaction upon con-
flict situations including negotiation processes for potential
plan adaptions (cf. Figure 4). The protocol uses Agent
Communication Language (ACL) messages in the commu-
nication process and prescribes the order of message ex-

change in the different interaction and negotiation phases.
Within DCNP a set of negotiation states and message types
is defined that were implemented by respective state transi-
tions and message exchanges in the DCNPProtocol.

The inter-organizational coordination is started by the ac-
tor called Initiator who sends an activation signal to the
Participant and thus initializes the whole coordination
process. The initiator is a customer and hence initially an
OEM in the coordinated SC. Since the concept covers mul-
tiple tiers of SCs, also BTO suppliers (as customers of BTS-
or other upstream BTO-suppliers) may initiate the
DCNPProtocol in order to coordinate their supplier net-
work. The next protocol step is the exchange of the con-
sumption plan i.e. the intended capacity utilization in the
planning horizon. This results in a state transition of both
actors (represented by so called sub-actors UpdatedCusto-
mer and UpdatedSupplier). The exchanged plans are com-
pared with the performance agreement in order to distin-
guish between regular and conflict situations. In case of no
conflicts, the DCNPProtocol is terminated (indicated in
Figure 4 by an arrow defining the state transition to the
finalization phase).

In case of a performance agreement violation, the actual
negotiation protocol for conflict resolution is started. The
negotiation protocol requires several state transitions and
local planning invocations, especially in order to account for
the different stages of the conflict resolution process (e.g.
adaption request sent, temporary reservation made and final
reservation accepted). Due to the support of multi-tier net-
works, the DCNPProtocol is processed in a recursive man-
ner. This allows BTO suppliers to coordinate their supply
network before accepting definite changes to performance
agreements on the customer side. After processing the nego-
tiation protocol and coordinating the supply network (or in

Initiator ParticipantSupplier

UpdatedCustomer

OpenNegotiation
Customer

FlexibleNegotiation
Customer

FixNegotiation
Customer

ConflictedCustomer

UpdatedSupplier

ConflictedSupplier

OpenNegotiation
Supplier

FlexibleNegotiation
Supplier

FixNegotiation
Supplier

InactiveCustomer InactiveSupplier

ActivationSignal : Inform
MS MessageScope : None

ActivationConfirmation : Inform
MS MessageScope : None

ConsumptionPlan : Request
MS MessageScope : None

ConflictMessage : Inform
MS MessageScope : None

ShortageMessage : Request
MS MessageScope : None

ShortageConfirmation : Agree
MS MessageScope : None

AdaptionRequest : CFP
MS MessageScope : None

AdaptionProposal : Propose
MS MessageScope : None

Reservation : AcceptProposal
MS MessageScope : None

TemporaryReservationProposal :
Agree

MS MessageScope : None

TemporaryReservationRequest :
AcceptProposal

MS MessageScope : None

ReservationConfirmation : Agree
MS MessageScope : None

DeactivationSignal :
AcceptProposal

MS MessageScope : None

ParticipantInitiator

Adaption Request: request

Adaption Proposal: propose

Adaption Request: request

Temporary Reservation Request: request
Temporary Reservation Proposal: propose

Adaption Request: request

Reservation Request: request

Reservation Proposal: propose
Deactivation Signal: inform

Initialization and
Plan Exchange

Conflict Identification

Conflict Resolution
(Negotiation Phase)

Figure 4: Phases in the collaborative DCNP concept and corresponding message exchanges in the protocol.

Bernd Hellingrath, Peer Küppers

28

case of no conflicts), the DCNPProtocol terminates by send-
ing a DeactivationSignal.

The collaborative DCNP concept defines several intra-
and inter-organizational business processes that are per-
formed for coordinating the SC. As mentioned above, these
processes are modeled by defining plans that describe the
behavior of agents in detail. These plans control the internal
behavior and therefore connect local planning and decision
processes to the inter-organizational communication
processes as defined in the DCNPProtocol. Thus, besides
the internal tasks to be performed at the different stages of
the coordination process (plan exchange, monitoring and
conflict resolution), the required procedures, with respect to
production planning (primary demand determination, ad-
justment planning, local deficit calculation and proposal
formulation) and procurement planning (secondary demand
determination, shortage management and deficit calcula-
tion), were modeled in several plans in the agent view.

Modeling the intra- and inter-organizational processes of
a CP concept by means of DSML4MAS constitutes a large
part of the modeling process in the framework that is pur-
sued by our research.1

4 Implementing the Collaborative DCNP
Concept

 Since an MDD approach is followed,
these models can be translated into source code allowing the
execution of the coordination concept in a concrete SC
scenario in the JADE runtime environment. The following
chapter therefore describes further required steps in imple-
menting and evaluating the collaborative DCNP concept.

The models of the collaborative DCNP in FRISCO define
the basis for the implementation in an MAS runtime envi-
ronment. The DSML4MAS development environment pro-
vides several translation rules that ultimately allow the gen-
eration of executable (agent) source code.

The models of the MAS as described in the previous
chapter conform to the PIM4Agents metamodel (cf. [Hahn
et al., 2009]). The developers of the DSML4MAS environ-
ment defined mapping rules that allow a translation of cor-
responding platform independent MAS models to platform
specific models and furthermore specified translations of the
platform specific models to executable code. These two
transformation steps therefore provide a mechanism to au-
tomatically generate JADE compliant agent code (in Java)
based on the graphical models of the collaborative DCNP.
In addition, the MDD approach allows for the inclusion of
custom source code into the automatically generated code
(e.g. in order to invoke local optimization) which is not
changed by the transformation engine in case of model
modifications.

1 Besides the described models it is furthermore necessary to
define the SC agents’ knowledge in an ontology. This ontology is
provided by the framework and already contains many SCM-
related concepts to describe SCs, e.g. for sourcing relations, bill-
of-material, resources etc. (cf. [Hellingrath et al., 2009]). Exten-
sions being necessary in this part of the framework in order to
model a CP approach will not be described in detail here.

Besides the models of the collaborative DCNP described
in the previous chapter, an implementation of this concept in
one concrete SC scenario requires the structural definition
of a SC i.e. the assignment of specific actors to their respec-
tive roles in the coordination mechanism. This scenario
definition is specified in the “deployment view” of
DSML4MAS. Figure 5 shows an example of a deployment
diagram which is used to specify a two tier SC consisting of
one OEM, one BTO supplier and two BTS suppliers.

Figure 5: Scenario definition in the deployment view

The four agent instances are assigned with their respec-
tive roles to two organizations (OrganizationDCNP) which
were specified in the organization view (see descriptions in
chapter 3). These assignments define that the agents partici-
pate in the collaborative DCNP concept, i.e. the interactions
in these organizations follow the DCNPProtocol. Since one
OrganizationDCNP represents one stage of the SC being
coordinated, two organizations are modeled in the deploy-
ment diagram in order to represent a multi-tier structure.
The OEM/1st-tier relationship is therefore modeled by an
organization called orgTier1; the 1st/2nd-tier relationship
respectively by orgTier2. Based on this deployment diagram
the agent source code is generated by the DSML4MAS
transformation rules. The results represent the SC scenario
and can be deployed on the JADE platform afterwards. The
agents are capable of performing the collaborative DCNP
concept in a runtime environment allowing its evaluation.

In order to show and evaluate the correct operation of the
collaborative DCNP concept in the scenario, the MAS was
extended by a mechanism to simulate the business processes
and hence the DCNP protocol execution. This was achieved
by modeling a “simulation protocol” (also in DSML4MAS)
which all agents participate in and which is controlled by a
“simulation agent”. This allows triggering the agents each
period, i.e. the intra- and inter-organizational processes of
the collaborative DCNP are executed in the scenario conse-
cutively over multiple periods.

Figure 6 shows a screenshot of the graphical visualiza-
tions of two agents which perform the collaborative DCNP
concept in the exemplary SC: the agent depicted on the left
side represents the BTS supplier on tier 2 (agBTS2). The
agent interface shown on the right side in Figure 6
represents one of the two suppliers on tier 1 (agBTO1).
Thus, agBTO1 is supplied by agBTS2 and in turn supplies
the OEM (agOEM). One period was simulated, i.e. the ulti-
mate customers requested products from the OEM, which
afterwards communicated the resulting capacity demand to
its suppliers (including agBTO1). Conflict situations were
identified and the collaborative DCNP coordination me-
chanism started. Throughout the coordination processes,
network-wide adaptations of the capacity corridors were

Multi-Agent Based Collaborative Demand and Capacity Network Planning in Heterarchical Supply Chains

29

negotiated and agreed upon in order to meet the capacity
demand as good as possible. The thick lines indicate devia-
tions from the original performance agreements (thin lines)
that result from the automated negotiation processes. The
capacity demand from the agOEM required adaptations to
the performance agreement between agBTO1 and agOEM
(right side in Figure 6). Changes to the capacity corridors of
agBTO1 furthermore affected its supply network, i.e. also
agBTS2. This agent therefore had to increase the capacity
corridors of its performance agreement with agBTO1 in the
planning horizon (left side in Figure 6).

Figure 6: Annotated screenshot of agents in an exemplary scenario

In addition to the results of the coordination mechanism
in form of agreed plan adaptations, the conducted inter-
organizational communication processes were analyzed. By
means of the JADE “sniffer agent”, the messages exchanged
were traced proving the correct operation of the DCNPPro-
tocol over multiple tiers. These analyses therefore allow a
first evaluation of the collaborative DCNP concept. Appar-
ently, plan adaptations were performed in order to improve
the match between demanded and offered capacity in the
network. However, the evaluation component of FRISCO
has to be further extended for a transparent and comprehen-
sive monitoring of CP and SC performance indicators.

5 Conclusion
The research presented in this paper has two goals. First, the
suitability of MAS concepts in the domain of CP and decen-
tralized SC coordination is intended to be substantiated.
This goal was achieved by modeling and implementing the
collaborative DCNP coordination mechanism by means of
concepts and methods from the MAS research domain. The
structure of heterarchical SCs and the crucial inter-
organizational processes in CP approaches proved to be
reasonably representable by means of an MAS modeling
environment. The different views provided by the used
DSML4MAS allow an elegant modeling of all intra- and
inter-organizational business processes of the collaborative
DCNP concept. Based on these models, different SC scena-
rios can be defined to which the concept is easily applicable.
The automated code generation from MAS models to ex-
ecutable Java code provides a major advantage in the con-
sistent and re-usable implementation of CP concepts.

The second goal of the presented research addresses the
usage of MAS concepts in a more general framework for

modeling and evaluating arbitrary decentralized coordina-
tion mechanisms in heterarchical SCs. The implemented
proof-of-concept strengthens the argumentation for this
approach since requirements on the framework were shown
to be satisfiable by an MAS-based concept. However, the
framework is still under development and will be extended
in order to allow both an efficient modeling and evaluation
of arbitrary CP approaches. This especially requires re-
search on the measurement of CP performance indicators
and an extension of the framework’s evaluation capabilities.
In addition, the methodology that guides the CP modeling
and evaluation processes will be elaborated further.

References
[Breiter et al., 2009]. A. Breiter, T. Hegmanns, B. Hellin-

grath, and S. Spinler. Coordination in Supply Chain
Management - Review and Identification of Directions
for Future Research. In S. Voss, et al. Logistik Manage-
ment, Physica-Verlag, Heidelberg, 2009.

[Hahn et al., 2009]. C. Hahn, C. Madrigal-Mora, and K.
Fischer. A platform-independent metamodel for multia-
gent systems. Autonomous Agents and Multi-Agent Sys-
tems, 18(2): 239–266.

[Hellingrath et al., 2009]. B. Hellingrath, C. Böhle, and J.
van Hueth. A Framework for the Development of Multi-
Agent Systems in Supply Chain Management. In R.H.
Sprague. Proceedings of the 42nd annual Hawaii Inter-
national Conference on System Sciences, pages 1530–
1605, IEEE, 2009.

[Hellingrath and Hegmanns, 2010]. B. Hellingrath and T.
Hegmanns. Dezentrales und kollaboratives Bedarfs- und
Kapazitätsmanagement in build-to-order Produktions-
und Logistiknetzwerken. In W. Delfmann. Strukturwan-
del in der Logistik, Wissenschaft und Praxis im Dialog,
pages 11–31, DVV Media Group, 2010.

[Moyaux et al., 2006]. T. Moyaux, B. Chaib-draa, and S.
D‘Amours. Supply chain management and multiagent
systems: an overview. In B. Chaib-draa and J. Müller.
Multiagent-Based Supply Chain Management, pages 1–
27, Springer, Berlin, 2006.

[Nunes et al., 2009]. I. Nunes, E. Cirilo, C.J.P. Lucena, J.
Sudeikat, C. Hahn, and J.J. Gomez-Sanz. A Survey on
the Implementation of Agent Oriented Specifications. In
M.P. Gleizes and J.J. Gómez-Sanz. Agent-oriented soft-
ware engineering X, pages 169–179, Springer, Berlin,
2009.

[Schuh, 2006]. G. Schuh. Produktionsplanung und -
steuerung. Grundlagen, Gestaltung und Konzepte,
Springer, Berlin, 2006.

[Stadtler, 2009]. H. Stadtler. A framework for collaborative
planning and state-of-the-art. OR Spectrum, Vol. 31, No.
1, pages 5‐30, Springer, 2009.

Original
Corridor

Updated
Corridor

Capacity units

3000

2000

1000

Period

Capacity units

30

10

20

40

Original
Corridor

Updated
Corridor

Bernd Hellingrath, Peer Küppers

30

ARMO: Adaptive Road Map Optimization for Large Robot Teams

Alexander Kleiner*, Dali Sun* and Daniel Meyer-Delius* ∗

Abstract
Autonomous robot teams that simultaneously dis-
patch transportation tasks are playing more and
more an important role in present logistic centers
and manufacturing plants. In this paper we consider
the problem of robot motion planning for large
robot teams in the industrial domain. We present
adaptive road map optimization (ARMO) that is ca-
pable of adapting the road map in real time when-
ever the environment has changed. Based on linear
programming, ARMO computes an optimal road
map according to current environmental constraints
(including human whereabouts) and the current de-
mand for transportation tasks from loading stations
in the plant. We show experimentally that ARMO
outperforms decoupled planning in terms of com-
putation time and time needed for task completion.

1 INTRODUCTION
Recent trends in logistics and manufacturing clearly indi-
cate an increasing demand for flexibility, modularity, and
re-configurability of material flow systems. Whereas in the
past plant installations have been used for decades without
change, nowadays product life cycles and the demand for
product variety rely on innovative technologies that allow to
flexibly reconfigure automation processes without reducing
their availability. Therefore, distributed and self-organized
systems, such as teams of robots that autonomously orga-
nize transportation tasks, are playing an increasingly impor-
tant role in present logistic centers and manufacturing plants.

Besides the task assignment problem, i.e., allocating robots
to different tasks [14], another challenge in this domain is
to efficiently coordinate the simultaneous navigation of large
robot teams in confined and cluttered environments. In gen-
eral, multiple robot motion planning can be solved by either
considering the joint configuration space of the robots [2] or
by deploying decoupled techniques that separate the prob-
lems of motion planning and coordination [10]. Whereas
the first approach is intractable for large robot teams since

∗* Department of Computer Science, University of
Freiburg, Georges-Koehler-Allee 52, 79110 Freiburg, Germany,
{kleiner,sun,meyerdel}@informatik.uni-freiburg.de

the dimension of the joint configuration space grows linearly
and thus the search space grows exponentially with increas-
ing number of robots, the second approach yields typically
sub-optimal solutions, for example, requiring the robots to
perform larger detours in order to avoid collisions. Road map
planners are a popular method for single robot planning in
static environments [9] that compute during a pre-processing
phase a connectivity graph in free configuration space that is
then used for efficient path planning during runtime. How-
ever, dynamic domains, such as industrial environments, are
more challenging due to permanent changes in the environ-
ment, e.g., due to the placement and removal of objects such
as pallets and boxes, and the co-location of human workers.

In this paper we present adaptive road map optimization
(ARMO) for large robot teams that is capable of adapting the
road map in real time whenever the environment has changed.
In short, the planner computes an optimal road map accord-
ing to current environmental constraints (including human
whereabouts) and the current demand for transportation tasks
from the loading stations. We describe the environment of
the robot with a spatial grid map in which a hidden Markov
model (HMM) is used to represent dynamic changes [11].
From the continuously updated grid map the computation of a
Voronoi Graph [4] is triggered whenever significant changes
have been detected. The Voronoi graph, representing free
space connectivity, is taken as a starting point to extract road
segments (as shown in Figure 1) for the final road map. We
use a Linear Programming (LP) approach for computing the
optimal configuration of these segments with respect to min-
imal travel costs and maximal compactness of the network.
Figure 1 depicts the re-arrangement of the road map after lo-
cal changes of the environment have been detected. We show
experimentally that ARMO outperforms decoupled planning
in terms of computation time and time needed for task com-
pletion.

Kallman et al. used dynamic roadmaps for online mo-
tion planning based on Rapidly-exploring Random Trees
(RRTs) [8]. Velagapudi et al. introduced a distributed ver-
sion of prioritized planning for large teams where each robot
plans simultaneously and re-plans in case a conflict has been
detected [18]. Berg et al. presented a method for road map
based motion planning in dynamic environments [16]. In con-
trast to our method, which learns changes of the environment
online, their approach discriminates between static and dy-

31

Figure 1: Motivating example: In industrial environments the
map can locally change due to replaced objects, such as pal-
lets, as well as gathering humans. Adaptive road map opti-
mization facilitates the simultaneous navigation planning of
large robot teams while respecting these changes.

namic objects, e.g. walls and robots, in advance, which might
fail when also portions of the map have to be considered as
dynamic. Bellingham et al. proposed a method for solving
the cooperative path planning for a fleet of UAVs [3]. They
formulate the task allocation problem as a mixed-integer lin-
ear program (MILP). Sud et al. developed an approach for
path planning of multiple virtual agents in complex dynamic
scenes [13]. They utilize first- and second-order Voronoi dia-
grams as a basis for computing individual agent paths. While
computational efficient, their method does not focus on opti-
mizing the global efficiency of the multi agent team.

The reminder of this paper is organized as follows. In Sec-
tion 2 the problem is formally described and in Section 3 a
description of the target system is provided. In Section 4 the
algorithm for adaptively recomputing the road map are de-
scribed, and in Section 5 results from experiments are pre-
sented. We finally conclude in Section 6.

2 PROBLEM FORMULATION
We consider the problem of coordinating the execution of de-
livery tasks by a team of autonomous robots, e.g., the trans-
portation of crates containing goods, between a set of fixed
stations S. For each delivery task dkl ∈ D(t) a robot has
to be assigned to finalize the delivery by transporting the
corresponding crate from station k ∈ S to station l ∈ S .
We assume that the assignment problem has been solved
(e.g. as shown in our previous work [14]), and hence re-
strict our attention to the problem of solving the multiple
robot motion planning problem as defined in the following.
Let R = {R1, R2, . . . , Rn} be the set of n robots navigat-
ing simultaneously on a two-dimensional grid map. During
planning, each robot has a start configuration si ∈ Cfree and
a goal configuration gi ∈ Cfree, where Cfree is the subset
of configurations robots can take on without colliding with
static obstacles. Note that in our case these configurations di-
rectly map to locations and orientations on the discrete grid
map which are collision free given the footprint of the robot.

Figure 2: The target system: Robots equipped with convoyer
and RFID reader for autonomously handling transportation
tasks: (a) approaching a station for loading. (b) safe naviga-
tion among humans.

The problem is to compute for each robot Ri ∈ R a path
πi : [0, Ti] → Cfree such that πi(0) = si and πi(Ti) = gi
which is free of collisions with the trajectory πj of any other
robot j 6= i. Note that Ti denotes the individual path length
of robot Ri.

We consider environments with dynamic obstacles such as
pallets and larger crates that might change their locations over
time. Therefore, Cfree is a function of time which we denote
by Cfree(t). Note that we assume that Cfree is static during
each planning cycle.

3 SYSTEM OVERVIEW
Our system is based on the KARIS (Kleinskalige Autonomes
Redundantes Intralogistiksystem) [7] platform developed by
a joint effort of several companies and universities of the “In-
tralogistic Network” in south Germany. The long-term goal
of this project is to deploy hundreds of these elements to solve
tasks in intra-logistics and production, such as autonomously
organizing the material flow between stations. The element
has a size of 50 × 50 cm, a payload of 60 kg, and is capable
to recharge its batteries via contact-less rechargers let into the
ground. Furthermore, it contains a high precision mechanism
for enabling automatic docking maneuvers, either with other
elements or a loading station. Each element is equipped with
a holonomic drive to facilitate docking behaviors and a con-
veyor for loading and unloading crates when docked with a
loading station. The convoyer has an integrated RFID reader
for directly reading from the crates their destination, e.g. the
target station ID, when they are placed on the conveyer.

For the purpose of autonomous navigation the element is
equipped with two SICK S300 laser range finders (LRFs)
mounted in two opposing corners, wheel odometry, and an
inertial measurement unit (IMU). Navigation is based on grid
maps, which are generated from data collected by once steer-
ing a single robot manually through the environment. We
use Monte-Carlo localization [6] with wheel odometry, IMU,
and range readings from the two LRFs for localizing robots
on the grid map. Furthermore, the typical hybrid architec-
ture is deployed consisting of two components, which are a
deliberative planning layer based on the grid map and a reac-
tive safety layer based on LRF data directly. Figure 2 depicts
the demonstration of the system during the Logimat fair in
Stuttgart 2010. At the current stage, the system is capable of

Alexander Kleiner, Dali Sun, Daniel Meyer-Delius

32

Server

Mehrere Seiten

Robot N

Dynamic
Occupancy Grid

Local Navigation

Local Planner

Road Map

Grid Map

Map
Inconsistencies

Adaptive Road Map
Planner

Localization

Grid
Map

Figure 3: System Overview

safe autonomous navigation in human workspaces for team
sizes of up to four robots.

The work presented in this paper has the goal to extend
the planning system for the simultaneous navigation of large
robot teams in dynamically changing environments. Figure 3
depicts the overall system architecture and modules of the
considered extension. The localization module reports incon-
sistencies between sensor observations and the current grid
map to the Dynamic Occupancy Grid Module which com-
putes an updated version of the grid map [11]. The up-
dated grid map is published to the localization module of each
robot, and also to the Adaptive Road Map Planner (see Sec-
tion 4) that computes a new road map, which is then published
to the local planner of each robot. The local planner computes
then based on the road map a path that is executed by the nav-
igation module. The overview does not contain the mecha-
nism for task allocation, i.e., to assign robots to delivery taks.
In the current system this task is solved by the contract net
protocol [12], however, also more sophisticated approaches,
such as the one presented in our previous work [14] can be
deployed.

4 ADAPTIVE ROADMAP PLANNER
In this section we describe the procedure for computing the
adaptive road map given a dynamic occupancy grid map, a set
of stations s ∈ S, where loc(s) denotes the location (xs, ys)
of station s on the grid map, and a set of delivery tasks D,
where each dkl ∈ D requires the routing of packages from
station k ∈ S to station l ∈ S.

4.1 Computation of the connectivity network
Our goal is to compute a road map that is optimal in terms
of efficiency and compactness for the simultaneous routing
of robots executing delivery tasks. For this purpose we first
compute the Voronoi graph [4] from the dynamic grid map,
which then serves as a basis for computing the connectivity
network C = (V,E) consisting of nodes v ∈ V that cor-
respond either to station locations loc(s) or crossings, and
edges e ∈ E that connect all stations and crossings on the
map. The computation of C is carried out by three steps. First,
we determine for each tuple (i, j) ∈ S ∧ i 6= j the set of al-
ternative paths Aij connecting station i and j on the Voronoi
graph. Second, according to the method described in [5], we

replace each Aij by orthogonal straight lines (either horizon-
tal or vertical) under the constraint that they have to be within
a minimum safety distance to obstacles including the maxi-
mal extent of robots from their rotational center. Third, we
add all straight lines to E while merging parallel lines if they
exceed the double size of the robots. Besides station locations
loc(s), for each crossing line a node is created and added to
V . Finally, we compute for each eij ∈ E the maximal num-
ber of possible lanes wij for this connection according to the
distance to the nearest obstacle, and the time needed to travel
this segment cij according to its length.

4.2 Definition of the LP problem

Based on the connectivity network C, we define our logis-
tics problem similar to the minimum cost flow problem [1],
however, with the difference that the number of lanes in both
directions between two nodes and thus the capacities are vari-
able. The goal is to find a network structure by which pack-
ages are optimally routed between the stations in the network.
At each time there exists a set of simultaneous delivery tasks
dkl ∈ D(t) that require the routing of packages from station
k ∈ S to station l ∈ S . We denote by bkl = b(dkl) the
requested throughput rate, i.e., the amount of packages per
minute that have to be delivered from station k to station l.

Given the connectivity network C, we associate with each
edge a cost cij , the maximal number of lanes wij allowed
in the real world, and the capacity of a single lane connec-
tion uij . Whereas the cost cij expresses the time needed to
travel from i to j, capacity uij expresses the maximal num-
ber of robots that can travel on this connection via a single
lane at the same time without causing congestions. The num-
ber of lanes in both directions between two nodes i and j is
expressed by the decision variables yij and yji, respectively.
For example, yij = 2, yji = 1 denotes a single lane connec-
tion from node j to node i and a double lane from node i to
node j. The quantity wij constraints the set of possible as-
signments to yij and yji according to the space available in
the the real world. For example, if wij = 4, then some of the
possible assignments are (0, 0), (0, 1), (1, 0), (2, 1), (1, 2),
(2, 2), ... In general, it has to be assured that yij + yji ≤ wij .
Note that there exists the same limit in both directions and
thus wij = wji.

The decision variables xklij define the flow assigned to an
edge due to the delivery from k to l. The total flow xij has to
be bigger or equal to zero and below the maximal flow uijyij ,
where uij is the capacity of a single lane and yij the number
of activated lanes.

We associate for each delivery task dkl the requested
throughput b(i) with the respective station nodes i. For each
node i ∈ V , b(i) = bkl if i = k, i.e., vertex i is a source, and
b(i) = −bkl if i = l, i.e., vertex i is a sink. All other nodes
for which b(i) = 0 are functioning as transition nodes. The
problem formulation can then be stated as follows:

ARMO: Adaptive Road Map Optimization for Large Robot Teams

33

Minimize
∑

(i,j)

∑

k

∑

l

cijx
kl
ij +

∑

(i,j)

uijyij (1)

subject to:

∑

j:(j,i)

xklij −
∑

j:(i,j)

xklji =

−bkl(i) (i = k) ∀ i, k, l
bkl(i) (i = l) ∀ i, k, l
0 otherwise.

(2)
yij + yji ≤ wij ∀ (i, j), (3)

xklij ≥ 0 ∀ (i, j), k, l, (4)
∑

k

∑

l

xklij ≤ uijyji ∀ (i, j), k, l (5)

∑

j:(i,j)

xklji ≤ Cmax (i 6= k ∧ i 6= l) ∀ i, k, l (6)

Equation 1 minimizes over the total travel costs and the phys-
ical space occupied by the road network. Equation 2 enforces
the flow conservation in the network, i.e., the summed flow
from all incoming edges j : (j, i) and all outgoing edges
j : (i, j) has to be equal −bkl if i is a sink, bkl if i is a source,
and zero otherwise. Equation 3, Equation 4, and Equation 5
are constraining the maximal number of lanes, minimal and
maximal flow, respectively. Finally, Equation 6 ensures that
the total flow through crossings does not exceed the maximal
crossing capacity Cmax which depends on the spacial size of
crossings, i.e., how many robots can be located there at the
same time. Note that delivery tasks for which the node oper-
ates as source or sink have no influence on the capacity.

The above formulation can efficiently be solved by linear
programming solvers, such as CPLEX, when defining the de-
cision variables xij , yij by continuous values and rounding
up the yij from which then the road map can directly be con-
structed. Furthermore, we yield for each delivery task dkl

a subset of edges from the road map having positive flow
assignments xklij > 0. These quantities are directly utilized
by the local planner (see Section 3) for extracting individual
robot plans by finding the shortest path on the road map by
the following successor state expansion: For each node i, we
perform random sampling over all outgoing edges weighted
according to their normalized flow values xklij . If there ex-
ists only one edge with xklij > 0 for node i, the edge is ex-
panded directly. Finally, the local navigation module follows
this plan while coordinating locally at crossings with other
robots when needed.

5 EXPERIMENTAL RESULTS
The system has been tested in several different environments.
Figure 4 depicts some of these environments that were used
for the results presented in this paper. The PLANT map has a
size of 51m× 56m, the ASE map a size of 94m× 82m, and
the KNO map a size of 88m×43m. On each map we defined
locations of loading stations: 8 on PLANT, 16 on ASE, and 8
on KNO.

The robot platform shown in Figure 2 has been presented
during the Logimat fair in Stuttgart, 2010, where the task of

(a) (b)

(c)

Figure 4: Grid maps utilized for experiments: (a) the PLANT
map generated from a simulated environment, (b) the ASE
map generated in a real logistic center, (c) the KNO map gen-
erated in a large distribution center.

the robot team was to deliver freshly prepared coffee cups
to visitors waiting at the delivery stations, and to return used
cups back to the coffee kitchen. During this demonstration up
to four robots were continuously running for three days with-
out any interruption. The robots were driving in average four
kilometers per day without causing collisions or deadlocks.
Due to the small team size we utilized for this demonstration a
decoupled planning technique together with the local naviga-
tion module. In the following a comparison with large robot
teams between ARMO and the decoupled technique based
on prioritized planning from Berg and colleagues [15] will
be presented. In prioritized planning, robot trajectories are
planned iteratively after a pre-defined priority scheme. When
planning for the i’th robot trajectories of the i-1 robots that
were planned previously are considered as dynamic obstacles.
Berg and colleagues define the query distance as the distance
for each robot to reach its goal configuration on the shortest
path when ignoring the other robots. In order to minimize
the maximum of arrival times, priorities are assigned accord-
ing to this distance: the longer the query distance the higher
the priority assigned to a robot. The planner is complete un-
der the assumption that start and goal locations of each robot
are so called garage configurations, i.e., configurations that
are not part of Cfree of any other robot. The method effi-
ciently avoids the intractable computation of n! possible pri-
ority schemes, however, requires at least |R| sequential calls
of the motion planner.

We utilized the Stage software library [17] for simulating
large robot teams. In our experiments we used the same navi-
gation software that is used on the real robots together with a
model of our real platform, including the simulation of laser
beams and odometry. One advantage of Stage is that it allows

Alexander Kleiner, Dali Sun, Daniel Meyer-Delius

34

Map #Rob. Method # C (m/s) CTime (s)

A
SE

20 ARMO 1432 0.47 969
PRIO 2142 0.43 926

50 ARMO 5040 0.37 545
PRIO 10625 0.28 631

100 ARMO 8307 0.3 369
PRIO 16983 0.2 496

PL
A

N
T

20 ARMO 1471 0.42 628
PRIO 1346 0.38 610

50 ARMO 5563 0.34 426
PRIO 11601 0.25 481

100 ARMO 15145 0.22 383
PRIO 107700 0.21 874

K
N

O

20 ARMO 506 0.38 1383
PRIO 5638 0.35 1346

50 ARMO 2951 0.31 815
PRIO 70799 0.16 1371

100 ARMO 7729 0.29 513
PRIO 102836 0.11 1167

Table 1: Comparing prioritized planning (PRIO) with adap-
tive road map optimization (ARMO).

to build simulation worlds directly from grid maps that were
generated from real environments. For the following experi-
ment we used the grid maps shown in Figure 4.

We generated 100 delivery tasks for each map that were
handled by 20, 50, and 100 robots during different runs. Ta-
ble 1 provides the results from comparing prioritized plan-
ning (PRIO) with adaptive road map optimization (ARMO)
on different maps with different numbers of robots. We mea-
sured the number of conflicts (C) of the optimal path in Cfree
with trajectories of the other robots. In the case of ARMO
these were the situations in which a robot had to wait for
other robots before entering a segment, and in the case of
prioritized planning these were the situations were robots had
to plan around a conflicting path of a higher prioritized robot.
Furthermore, we measured the average velocity of all robots
(avg. v) and the total time needed by all robots to complete
the task (CTime). As can be seen from Table 1 and Fig-
ure 5, while leading to slightly longer completion times for
small robot teams, ARMO notably reduces this time when
the team size increases. This is also reflected by the num-
ber of conflicts and the average velocities of the robots. Pri-
oritized planning minimizes the final completion time after
a heuristically determined order, whereas LP-based planning
in ARMO minimizes the global flow of robots, leading to a
more efficient distribution of the vehicles over time.

The computation times of both methods were measured
in seconds on an Intel DualCore running at 2.13 GHz. We
measured for prioritized planning with 50 robots an average
computation time of 0.03± 0.03 on PLANT, 0.05± 0.04 on
ASE, and 0.1±0.17 on KNO, and with 100 robots 0.1±0.08
on PLANT, 0.13 ± 0.08 on ASE, and 1.1 ± 0.7 on KNO.
ARMO required for the road map computation 0.9 + 0.6 on
PLANT, 0.82+0.84 on ASE, and 1.2+10.3 on KNO, where
the first number denotes the time for extracting the fully con-
nected graph, and the second number the time for solving the

ASE KNO

C
o
m

p
le

ti
o
n
 T

im
e

[s
]

20 PRIO

20 ARMO

50 PRIO

50 ARMO

100 PRIO

100 ARMO

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

PLANT

Figure 5: Comparing the CTime of prioritized planning
(PRIO) and adaptive road map optimization (ARMO).

LP problem. Within each planning cycle ARMO needed in
average only 0.002 on PLANT, 0.004 on ASE, and 0.01 on
KNO for any number of robots. In summary, the number of
robots has nearly no effect on the computation time needed
by ARMO, however, we measured a significant growth of the
time needed by prioritized planning. On the contrary, ARMO
requires much more time for computing the road map when
the environment is very large and complex, such as the KNO
map, which however needs only to be performed at low fre-
quency, i.e., when the environment was significantly changed.

We also evaluated ARMO with respect to dynamic changes
of the grid map. For this purpose we modified the ASE map
step wise by adding successively obstacles that were updated
in the map by the dynamic occupancy grid approach. Figure 6
depicts two snapshots taken at successive points in time. As
can be seen, the road map adjusts to the changes at the cost of
higher completion times. For 100 robots the completion time
increased from 378s (no modifications) to 410s (first modifi-
cation) and 420s (second modification). We performed sev-
eral more experiments for evaluating the adaptivity of our ap-
proach. Also after changing the distribution of delivery tasks
between the stations, the road map dynamically adjusted by
removing or adding links between the stations. Note that in
this case only the LP solver is restarted without re-computing
the connectivity network C.

6 CONCLUSION
We proposed an adaptive road map planner based on a lin-
ear programming formulation which can be used for motion
planning of large robot teams in dynamically changing en-
vironments. Experimental results have shown that ARMO
leads to more efficient multi-robot plans than decoupled tech-
niques while keeping the demand for computational resources
low. In fact, the computation time needed by ARMO depends
mainly on the complexity of the environment rather than on
the number of robots. We believe that the computation of the
road map could further be improved by splitting the map into
independent areas that are interconnected via fixed crossing
points similar to the stations. Then, only a part of the road
map would have to be recomputed after local changes have
been detected.

ARMO: Adaptive Road Map Optimization for Large Robot Teams

35

(a) (b)

(c) (d)

Figure 6: Adjustment of the road map according to dynamic
changes in the map (a,c) source of disturbance and (b,d) re-
sulting modifications reflected in the road map.

Furthermore, we have shown that ARMO is adaptive to dy-
namic changes in the map, i.e., the road map is reconstructed
accordingly, whereas changes in the map are detected by dy-
namic grid maps, an extension of conventional grid maps.

We conducted several more experiments and conclude that
our method is capable to efficiently solve a wide variety of
problems. One restriction of our current implementation is
the fact that our road map planner only returns a solution
when the overall throughput demanded by the stations can
be routed given the environmental constraints, i.e., does not
exceed the capacity of the network. One future extension will
be to introduce priorities for deliveries and to construct the
network from a subset of tasks sampled according to their
priority in case the requested throughput is higher than the
capacity of the network. Furthermore, when a larger num-
ber of real robots is available, ARMO will be used with the
real platform deployed in one of the logistic centers of our
partners.

References
[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Or-

lin. Network flows: theory, algorithms, and applications, vol-
ume 1. Englewood Cliffs, N.J.: Prentice Hall, 1993.

[2] J. Barraquand and J.-C. Latombe. Robot motion planning: A
distributed representation approach. International journal of
robotics research, 10:628–649, 1991.

[3] J.S. Bellingham, M. Tillerson, M. Alighanbari, and J.P. How.
Cooperative path planning for multiple uavs in dynamic and
uncertain environments. In Decision and Control, 2002, Pro-
ceedings of the 41st IEEE Conference on, volume 3, pages
2816 – 2822 vol.3, 2002.

[4] H. Choset, , and Burdick J. Sensor-based exploration: The hi-
erarchical generalized voronoi graph. The International Jour-
nal of Robotics Research, 19(2), 2000.

[5] Xavier Décoret and François X. Sillion. Street Generation for
City Modelling. In Architectural and Urban Ambient Environ-
ment, Nantes France, 2002.

[6] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo
localization for mobile robots. In Proc. of the IEEE Int. Conf.
on Robotics & Automation (ICRA), 1998.

[7] H. Hippenmeyer, K. Furmans, T. Stoll, and F. Schönung.
Ein neuartiges Element für zukünftige Materialflusssysteme.
Hebezeuge Fördermittel: Fachzeitschrift für Technische Lo-
gistik, (6), 2009.

[8] M. Kallman and M. Mataric. Motion planning using dynamic
roadmaps. In Proc. of the IEEE Int. Conf. on Robotics & Au-
tomation (ICRA), volume 5, pages 4399–4404, 2004.

[9] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars.
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. Robotics and Automation, IEEE Trans-
actions on, 12(4):566 –580, August 1996.

[10] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/.

[11] D. Meyer-Delius, J. Hess, G. Grisetti, and W. Burgard. Tempo-
rary maps for robust localization in semi-static environments.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS), Taipei, Taiwan, 2010.

[12] Reid G. Smith. The contract net protocol: High-level com-
munication and control in a distributed problem solver. IEEE
Transactions on Computers, C-29(12):1104–1113, 1981.

[13] A. Sud, E. Andersen, S. Curtis, M.C. Lin, and D. Manocha.
Real-time path planning in dynamic virtual environments us-
ing multiagent navigation graphs. Visualization and Computer
Graphics, IEEE Transactions on, 14(3):526 –538, 2008.

[14] D. Sun, A. Kleiner, and C. Schindelhauer. Decentralized hash
tables for mobile robot teams solving intra-logistics tasks. In
Proc. of the 9th Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), pages 923–930, Toronto,
Canada, 2010.

[15] J.P. van den Berg and M.H. Overmars. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS),
pages 430–435, 2005.

[16] J.P. van den Berg and M.H. Overmars. Roadmap-based motion
planning in dynamic environments. Robotics, IEEE Transac-
tions on, 21(5):885–897, 2005.

[17] R. Vaughan. Massively multi-robot simulation in stage. Swarm
Intelligence, 2(2):189–208, 2008.

[18] P. Velagapudi, K. Sycara, and P. Scerri. Decentralized priori-
tized planning in large multirobot teams. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pages 4603–4609. IEEE.

Alexander Kleiner, Dali Sun, Daniel Meyer-Delius

36

HCOP : Modeling Distributed Constraint Optimization Problems with Holonic
Agents

Fernando J. M. Marcellino, Jaime S. Sichman
Laboratório de Técnicas Inteligentes (LTI)

Escola Politécnica (EP) - Universidade de São Paulo (USP)
Av. Luciano Gualberto, 158 – trav. 3
05508-970 – São Paulo – SP – Brasil

fmarcellino@usp.br, jaime.sichman@poli.usp.br

Abstract
This paper defines a new distributed optimiza-
tion problem, called Holonic Constraint Optimiza-
tion Problem (HCOP). It is based on the concepts
of Distributed Constraint Optimization Problem
(DCOP) and Holonic Agents. We present the back-
ground theory and the formalization of a HCOP,
which rather than a mere generalization of a DCOP,
represents a distinct paradigm. We also propose a
meta-algorithm, called HCOMA, to solve this kind
of problem, where several available DCOP algo-
rithms, or even centralized algorithms, can be em-
bedded and integrated in such a way to obtain the
most fitting configuration for each case. In ad-
dition, a motivating application in the oil supply
chain domain is presented in order to illustrate the
new approach.

1 Introduction
Constraint satisfaction and optimization are powerful
paradigms that model a large range of tasks like scheduling,
planning, optimal process control, etc. Traditionally, such
problems were gathered into a single place, and a centralized
algorithm was applied in order to find a solution. However,
problems are sometimes naturally distributed, so Distributed
Constraint Satisfaction (DisCSP) was formalized by Yokoo
et al. in [Yokoo et al., 1992]. Here, the problem is divided
among a set of agents, which have to communicate with each
other to solve it. More recently this paradigm was extended
to constraint optimization by replacing the logical constraints
with valued ones, and it was formalized as a Distributed Con-
straint Optimization Problem (DCOP) [Modi et al., 2006]. In
general, an optimization problem is much harder to solve than
a DisCSP, as the goal is not just to find any solution, but the
best one.

If we analyze some real constraint optimization problems,
we can notice that they own a recursive nature, which is not
currently exploited by the available optimization frameworks
and their associated algorithms. An example of this kind of
problem is the supply chain management. Usually each entity
in the chain is likely to act in its best interests to optimize its
own profit. However, in general, that doesn’t meet the goal
of the optimization of the entire supply chain. On the other

hand, the complexity of the whole chain integration makes
the development of a single centralized system an unfeasible
task. In addition, even if it were possible, the frequent and un-
foreseeable changes in the business environment would make
the results of such a system obsolete and useless very fast.

This paper defines a Holonic Constraint Optimization
Problem (HCOP) as a new paradigm to model distributed op-
timization problems which meet those features. Its main mo-
tivation is modeling such problems through the integration
of solvable subproblems into which they may be naturally
partitioned. Sections 2 and 3 synthesizes the basic concepts
involved in the work, whereas section 4 introduces a prob-
lem of the oil supply chain industry, which was the original
motivation for the proposed model. Section 5 describes and
formalizes the HCOP, and suggests a meta-algorithm, called
HCOMA, for its solution. Section 6 characterizes the prob-
lem presented in section 4 as a HCOP, and shows the advan-
tage of this approach. Finally, the paper concludes with a
summary of the results, and an outlook on future research ac-
tivities.

2 Holonic Agents
MutiAgent System (MAS) has become a natural tool for mod-
eling and simulating complex systems. However, in those
systems there usually exist a great number of entities inter-
acting among themselves, and acting at different abstraction
levels. In this context, it seems unlikely that MAS will be
able to faithfully represent complex systems without multiple
granularities. That’s why holonic systems have attracted the
attention of researchers [Hilaire et al., 2008]. The term holon
was coined by Arthur Koestler [Koestler, 1967], based on the
Greek words holos for whole and on for part. Thus, a holon
is a self-similar or fractal structure that consists of several
holons as components, and is itself a part of a greater whole.
A holon (superholon) is composed of other holons (members
or subholons) and should meet three conditions: (i) to be sta-
ble, (ii) to be autonomous and (iii) to be able to cooperate.
Thus, according to Koestler [Koestler, 1967] a holarchy is a
hierarchy of self-regulating holons that function first as au-
tonomous wholes in supra-ordination to their parts, secondly
as dependent parts in sub-ordination to controls on higher lev-
els, called echelons, and thirdly in coordination with their lo-
cal environment.

Gerber et al. [Gerber et al., 1999] propose three types

37

of structures for holons, which vary with respect to the au-
tonomy of the members. The moderated group is the inter-
mediary structure, which was chosen for this work due to
its greater flexibility. According to [Hilaire et al., 2008] it
specifies a holonic organization with three main roles: head
role players are moderators of the holon, whereas represented
members have two possible roles: part, whose players be-
long to only one superholon, and multipart, where subholons
belong to more than one superholon. The head represents
the shared intentions of the holon and negotiates them with
agents outside the holon. The remainder of the holon, i.e. the
set of parts and multiparts, is called body.

3 Distributed Constraint Optimization
Problem (DCOP)

DCOP is a formalism that can model optimization problems
distributed due to their nature. These are problems where
agents try to find assignments to a set of variables that are
subject to constraints. It is assumed that agents optimize their
cumulated satisfaction by the chosen solution. This is dif-
ferent from other related formalisms involving self-interested
agents, which try to maximize their own utility individu-
ally. Thus, the agents can optimize a global function in
a distributed fashion communicating only with neighboring
agents, and even in a asynchronous way.

3.1 Formalization
According to [Petcu et al., 2007], a DCOP can be defined as
a tuple (A, V, D, F) where :

• A = {a1, . . . , an} is a set of n agents,
• V = {v1, . . . , vn} is a set of n variables, one per agent,
• D = {D1, . . . , Dn} is a set of finite and discrete domains

each one associated with the corresponding variable,
• F = {f1, . . . , fm} is a set of valued constraintsfi, where

fi : Dα1
× . . .×Dαk → R, αk ∈ {1 . . . n}

The goal is to find a complete instantiation V ∗ for all the
variables vithat maximizes the objective function defined as

F =
∑
i

fi

3.2 Available Algorithms
The main complete algorithms developed for DCOP are:

ADOPT It is a backtracking based bound propagation
mechanism [Modi et al., 2006], which operates completely
decentralized, and asynchronously. Its drawback is that it
may require a very large number of small messages, thus pro-
ducing considerable communication overhead.

OptAPO It is a hybrid between decentralized and central-
ized methods [Mailler and Lesser, 2004]. It operates as a co-
operative mediation process, where agents designated as me-
diators centralize parts of the problem in dynamic and asyn-
chronous mediation sessions. Message complexity is signifi-
cantly smaller than ADOPT’s. However, it may be inefficient
with some mediators solving overlapping problems. Further-
more, the dynamic nature of the mediation sessions make it

impossible to predict which part of the problem will be cen-
tralized.

DPOP It is an algorithm based on dynamic programming
[Petcu and Faltings, 2005] as an evolution of the DTREE al-
gorithm [Petcu and Faltings, 2004] for arbitrary topologies
even with cyclic graphs. It generates only a linear number
of messages, which, however, may be large and require large
amounts of memory, up to space exponential. Therefore it
was extended later, and a new hybrid algorithm called PC-
DPOP was developed [Petcu et al., 2007], that uses a cus-
tomizable message size and amount of memory.

4 Motivating Scenario
As discussed in the introduction, an example of actual dis-
tributed optimization problem with a recursive organization
is the supply chain management. Let us consider an oil com-
pany, which may be a single verticalized petroleum enterprise
or a set of cooperating companies of the oil business. That
enterprise system can purchase from the spot market (SM),
which satisfies any extra demands of crude oil and its deriva-
tives at higher prices. In the same way, SM can buy any ex-
ceeding inventories of those items at lower prices. A holonic
model can be built according to geographical criteria, taking
into account the transport integration. Thus there is a global
holon, which comprises several continent holons, which are
in their turn made up of region holons. These last holons may
contain subholons like refineries, which are responsible for
the production of oil derivative products, distribution termi-
nals, which store those products, and oil extraction platforms,
that yield crude oil (raw material). All the areas are connected
by transportation modals, like ships and pipelines, and each
area owns a specific logistic entity, which is responsible for
planning the transportation of products.

In general, the refineries own their specific centralized op-
timization system for production planning, whereas the logis-
tics of each echelon also has its respective optimization sys-
tem for the corresponding transport planning. However, the
different systems are not conveniently integrated to allow a
global optimization. Figure 1 depicts the holonic echelons of
this problem [Marcellino and Sichman, 2010].

5 Holonic Constraint Optimization Problem
(HCOP)

Some distributed constraint optimization problems have a hi-
erarchical and recursive structure, which is called holarchy.
That organization is characterized by entities with great co-
hesion with respect to their fellows, but only a coupling re-
lationship with their parents and childs along the hierarchy.
Therefore, that kind of modeling allows that the optmization
problem may be partitioned into a set of smaller optimiza-
tion problems, which, although not independent from each
other, present such a low coupling level that enable some par-
allelism. In addition it makes it easier to tackle the complex-
ity of the whole system, which is modeled through a simpler
model that repeats itself recursively throughout the complete
model.

Fernando J. M. Marcellino, Jaime Sichman

38

Figure 1: Diagram of an oil supply chain holonic model

5.1 Description

The HCOP consists of a set of agents that are called holons.
Those holons are distributed into different abstract levels
which are named echelons. By definition, a holon contains
other holons (its subholons) and is part of another holon
(its superholon). However, the most fundamental echelon
(η = 0) comprises only atomic holons, i.e., a conventional
agent that doesn’t contain any other. Each holon is respon-
sible for a variable. In the case of the atomic holon, it is
a decision variable, which is an independent variable in the
same sense of a DCOP variable. On the other hand, each
holon belonging to a higher echelon (η > 0) is associated
with an emergent variable, which is dependent on the inter-
nal variables of that holon, i.e., the variables associated with
its subholons. Such dependency is specified by an emergent
function.

The holonic organization adopted in this work classifies the
subholons into 2 roles : head, which is unique for each holon,
and part, which may be one or more. Here we don’t consider
the multipart role, as it will be seen later. It is also assumed
that the head holons are atomic in all the echelons, for the
sake of the model elegance, avoiding a recursive overload of
that kind of holon as η increases. Due to the distinctive be-
havior of the head holon, which is responsible for the com-
munication with the outside world, it is natural to set it apart
from the remainder of the holon, which comprises all the part
holons and is called body.

The internal strong cohesion of the holons, and the less
intense coupling between a holon and its superholon or sub-
holon, make it possible to view a HCOP as a partition of cou-
pled optimization problems (OPs). Basically each holon may
map to a corresponding OP.

5.2 Formalization
The HCOP is formalized as a tuple (H, R, V, D, E, F)
where :

• H = {H0, . . . , Hηmax}, where ηmax is the highest ech-
elon, Hη = {hη1, . . . , hηNη} is the set of holons of the
echelon η, H0 is the set of atomic agents h0i of the fun-
damental echelon, and Hηmax = {hηmax1} contains a
single holon (global holon);

• R = {r1, . . . , rR} is the set of relations between the
holons, where riis one of the two primal relations :

– headOfη : H ′η → Hη+1

– partOfη : H ′η → Hη+1

where η ∈ N, η < ηmax, H
′
η ⊂ Hη

Other important relations derived from these are :
– subholonOfη : Hη → Hη+1, η < ηmax, where
subholonOfη ≡ headOfη ∪ partOfη

– superholonOfη : Hη → Hη−1, η > 0, where
superholonOfη ≡ subholonOf−1η

• V = {V0, . . . , Vηmax}, where Vη = {vη1, . . . , vηNη} is
the set of variables of echelon η (a variable per holon);

• D = {D0, . . . , Dηmax}, where Dη = {Dη1, . . . , DηNη}
is the set of discrete and finite domains associated with
each variable of echelon η;

• E = {E1, . . . , Eηmax}, Eη = {Eη1, . . . , EηNη} is the
set of emergence functions of echelon η (one per holon,
but the atomic), Eηi : Dη−1α1 × . . . × Dη−1αBηi →
Dηi, where Bηi is the body size of the holon hηi, so that

vηi = Eηi

(
vη−1α1

, . . . , vη−1αBηi

)
, where the domain

is the cartesian product of the internal variables of holon
hηi, and vηi its emergent variable;

• F = {F0, . . . , Fηmax}, and Fη = {Fη1, . . . , FηNη},
Fηi = {fηi1, . . . , fηiMηi} is the set of Mηi val-
ued constraints between the members of holon hηi,
and fηij : Dη−1α1 × . . . × Dη−1αMηij → R,
whose domain is the cartesian product of the Mηij

variables{vη−1α1 , . . . , vη−1αMηij }, which is a subset of
the set of internal variables of holon hηi.

The goal is to find a complete instantiation V ∗ for all vari-
ables vηi that maximizes the objective function defined as

F =
ηmax∑
η=0

Nη∑
i=1

Mηi∑
j=1

fηij (1)

That definition reflects the holonic feature that there is no
direct constraint f between two part subholons belonging to
different superholons.

Since each holon hηi is responsible for an emergent vari-
able vηi via its head agent, if it is taken into account the emer-
gence function Eηi, it is possible to say that the agent head is
connected by an n-ary constraint cηi with all the members of
its holon, so that the following equation must be true :

vηi = Eηi

(
vη−1α1

, . . . , vη−1αBηi

)
(2)

HCOP : Modeling Distributed Constraint Optimization Problems with Holonic Agents

39

5.3 Holonic Constraint Optimization
Meta-Algorithm (HCOMA)

As already said, a HCOP can be seen as a holarchy whose
holons may map to corresponding OPs. Each of these prob-
lems may be represented by a DCOP, or a centralized OP
in the case of a holon with greater internal cohesion. Thus
HCOP is a distributed OP, which may be modeled as a hybrid
network of distributed and centralized optimization subprob-
lems. Therefore, to take advantage of that feature, it is more
appropriate a meta-algorithm for a HCOP, rather than a single
algorithm. Thus, it is possible to embed into the more abstract
framework different DCOP algorithms, or centralized opti-
mization algorithms, in such a way to obtain the most fitting
possibility for each case.

Since the holonic organization which was considered in
this work does not include multipart holons, the macro graph
made up of the several holons has a tree structure. In fact,
its a connected graph without cycles. Therefore, it was de-
veloped a meta-algorithm, which was based on the DTREE
algorithm [Petcu and Faltings, 2004]. Such a choice was
due to the nature of that algorithm, which is free of back-
tracking, and hence evolves ininterruptedly upwards and then
downwards, in a way compliant with the necessary indepen-
dence between the optimization subproblems of the HCOP.
On the other hand, algorithms like Adopt [Modi et al., 2006]
present a behavior which would interweave the holarchy ech-
elons during the solving process and make that decoupling
very hard.

At a first glance the exclusion of multipart holons seems an
oversimplification, which aims at the reduction to a tree struc-
ture. However, in the same way DTREE evolved to DPOP
(vide subsection 3.2) by arranging the relevant graph as a
pseudotree, what is possible for any graph, it is straightfor-
ward to adapt HCOMA accordingly. Thus that enhancement
would include multipart holons and support a general topol-
ogy, keeping the backtracking free trait.

The proposed meta-algorithm has 3 phases, which are de-
scribed in Algorithm 1. It is assumed that a generic and trust-
worthy optimization algorithm, distributed or centralized, is
available in the scope of each pertinent holon. However, it
must respect the protocol specified in Algorithm 2. For the
sake of simplicity and readability, it was used another derived
relation, as well as the predicate head, which are defined as :

headOfPartη ≡ headOfη(superholonOfη) : H ′η → H ′′η

head(hηi) := ∃hη+1 k ∈ Hη+1|hηi = headOf(hη+1 k),
where η ∈ N, η < ηmax, H

′
η ⊂ Hη, Hη = H ′η ∪H ′′η

The phase 1 is a bottom-up process, which starts from the
atomic holons and propagates upwards up to the global holon.
In phase 2 the global holon owns the maximum utilities asso-
ciated with each value of its emerging variable. That means
it has the maximum values of the global objective function
for each value of its variable. Then it will choose the highest
value, which will represent the optimum value of the global
objective function, whereas the associated value of its vari-
able is the first assignment of the solution. Finally, in phase 3
the global holon will send the index of that solution, regard-

Algorithm 1 HCOMA - Holonic Constraint Optimization
Meta-Algorithm

1: HCOMA(H, R, V, D, E, F)
2: Phase 1: Utility Computation
3: for all h0i ∈ H0 and not head(h0i) do
4: for all ind ∈ {1, . . . , | D0i |} do
5: BestUtil0i[ind]← 0
6: end for
7: send READY_msg(BestUtil0i, i) to

headOfPart0(h0i)
8: end for
9: return

10:
11: READY_msg_handler(BestUtil, j){by holon hη−1 k}
12: hη i ← superholonOfη−1(hη−1k)
13: for all ind ∈ {1, . . . , | Dη−1j |} do
14: BestUtilBodyη i[j][ind]← BestUtil[ind]
15: end for
16: if READY_msg received from hη−1 l,∀l, hη−1 l =

partOfη(hηi) then {received from all its parts}
17: for all I ∈ {1, . . . , | Dηi |} do
18: c←constraint(dηiI = Eηi(vη−1α)){dηiI ∈ Dηi}
19: call OptAlgthηi(c,BestUtilBodyηi, I)
20: end for
21: end if
22: return
23:
24: UTIL_msg_handler(BestUtil, ind){by holon hη−1 k}
25: hη i ← superholonOfη−1(hη−1k)
26: BestUtilηi[ind]← BestUtil
27: if UTIL_msg received for all ind ∈ {1, . . . , | Dηi |}

then
28: if η < ηmax then
29: send READY_msg(BestUtilηi i) to

headOfPart(hηi) {to its head}
30: else {Global Holon}
31: Phase 2: Global Optimization
32: ind∗ ← argmaxind(BestUtilηi[ind])
33: OptimumUtil← BestUtilηi[ind

∗]
34: v∗ηi ← dηi ind∗
35: Phase 3: Termination
36: for all hη−1 k = partOfη(hηi) do
37: send VALUE_msg(ind∗) to hη−1 k
38: end for
39: end if
40: end if
41: return
42:
43: SOLUTION_msg_handler(SolInd, UpperInd){by

holon hηi}
44: SolIndηi[UpperInd]← SolInd
45: return
46:
47: VALUE_msg_handler(UpperInd∗){by holon hηi}
48: ind∗ ← SolIndηi[UpperInd

∗]
49: v∗ηi ← dηi ind∗{dηi ind∗ ∈ Dηi}
50: if η > 0 then
51: for all hη−1k = partOfη(hηi) do
52: send VALUE_msg(ind∗) to hη−1 k
53: end for
54: end if
55: return

Fernando J. M. Marcellino, Jaime Sichman

40

Algorithm 2 Optimization Algorithm of holon hη i
1: OptAlgthη i(ctrη i ind, BestUtilBodyη i, ind)

Require: - n-ary constraint ctrη i ind
-BestUtilBodyη i[k][l] corresponding to each dη−1k l ∈
Dη−1 k associated with each subholon hη−1 k of hη i

Ensure: - the maximum BestUtil correspond-
ing to value dη i ind ∈ Dη i such that

BestUtil ← argmaxl(
Mηi∑
j=1

fηij(dη−1 k l) +

+
∑
k

BestUtilBodyηi[k][l])

- the index SolIndη−1 k of each variable vη−1 k of the
subholons of hη i, corresponding to the solution.

2: executes the optimization algorithm of holon hη i
3: send UTIL_msg(BestUtil, ind) to headOfη(hη i)
4: for all hη−1 k = partOf(hη i) do
5: send SOLUTION_msg(SolIndη−1 k, ind) to hη−1 k
6: end for
7: return

ing its variable domain, to all its parts via a VALUE mes-
sage. By using that index, each part subholon will determine
its own solution value, and recursively will send its respec-
tive index to its parts by VALUE messages. This phase is
a top-down process, which is initiated by the global holon,
propagates downwards down to all the atomic agents, when
the meta-algorithm terminates. Figure 2 outlines HCOMA.
The proof that it is sound and complete can be obtained in a
straightforward way, as it will be shown next.

Figure 2: Outline of HCOMA

Proof of Correctness and Complexity
In any holon of any echelon, its head receives a UTIL mes-
sage for each value of its variable domain. Each of these
utility values is obtained from the execution of the optimiza-
tion algorithm of the superholon, which uses the best utilities
assigned to the domain values of the variables of each part.
Since it is assumed that the distributed or centralized opti-
mization algorithm is correct and terminates properly, if the
best utilities associated with the parts domain values are cor-
rect, it can be concluded that the head will receive the best
utilities for each value of its variable domain. But the atomic

holons of echelon η = 0 own the best utilities for each value
of their domains, for they depend only on themselves or inter-
nal optimization algorithms that are correct. Hence, by induc-
tion, it can be infered that any holon of any echelon will re-
ceive the best utilities for each value of its domain, since there
is no multipart agent, i.e., there are no cycles in the graph
made up of the holons and the constraints between them, and
therefore the utility associated with each holon is considered
only once. Thus, the global holon will choose the best util-
ity for the entire holarchy, and then all the subholons will be
informed and choose its respective domain values associated
with that solution.

Due to its tree structure HCOMA has polynomial time
complexity. As to the number of messages, it inherits the
behavior of DTREE algorithm, which is linear in the number
of agents (here holons) [Petcu and Faltings, 2004].

6 Modeling Example
As mentioned in section 4, the oil supply chain management
is a real candidate problem to be modeled as a HCOP. In
[Marcellino and Sichman, 2010] this problem was modeled
as a DCOP, where the objective function is the total profit in
the whole chain; it is also used a holonic approach: some
holons, like the Transport Planners and the Derivative Pro-
ducers, wrapped centralized optimizers.

In all the levels (echelons) of the supply chain the logis-
tics is the head of each holon i.e., the internal logistics for
the holon refinery or terminal, the regional logistics for the
holon region, and so on, up to the global logistics for the
holon global. Each logistics is responsible for the balance of
products between the suppliers and the clients, and manages
the transportation planning. The supplier role refers to any
entity that provides products to other entity of the chain, such
as a refinery, whereas the client role is played by any entity
which needs these products, such as a terminal. The differ-
ence between availabilty and need of a product represents the
emergent variable of the corresponding holon.

A refinery can produce multiple derivatives, and it does so
according to different production plans, which are character-
ized by processing a definite quantity of a particular type of
crude oil and producing a certain quantity of each resulting
derivative. In addition, each refinery or terminal is respon-
sible for the management of its inventories of each product.
Thus, the decision variables of the model in the basic eche-
lon (η = 0) are the production plan adopted by each refinery
during each period of time, and the inventory level of each
product in each refinery or terminal at the end of each period
of time.

The higher the echelon, the larger the spatial scope of the
corresponding holons. Similarly the higher the echelon, the
longer the period of time considered by the head logistics in
its planning. Thus, the holons result from a spatial and tempo-
ral discretization along growing abstract levels. On the other
hand, the problem comprises different OPs: the production
optimization of each refinery, and the transport optimization
of the logistics in each holon. These latter are associated with
growing echelons, and gradually embody larger geographic
areas and longer planning periods of time. In fact, the inter-

HCOP : Modeling Distributed Constraint Optimization Problems with Holonic Agents

41

Ref. 1 Ref. 2 Income Cost Profit
Local Optim. Plan B Plan B 5920 629 5291

Holonic Model Plan C Plan C 10080 4162 5918

Table 1: Integrated holonic X Conventional approach

nal logistics is responsible only for a refinery or terminal on
a day-by-day basis, the regional logistics takes care of an en-
tire region with the week as the time unit, and so on up to the
global logistics which focuses on the whole enterprise with a
planning horizon of semesters or even years.

Let us consider a case study, which is simple but represen-
tative. It includes all the relevant entities of the chain and
a significant set of products. It contains one continent with
three regions, and one overseas SM. The first two regions
comprise one refinery and one terminal, whereas the third re-
gion contains only one oil extraction area. Inside the regions,
entities are connected by pipelines, but regions and SM are
connected to each other by ships. The refineries produce three
derivatives (gasoline, diesel and naphtha) by processing three
types of crude oil (pet1, pet2 and pet3). The refineries can
operate according to three production plans, which are spe-
cific to each refinery: plan A, plan B, and plan C. Although it
is not a real situation, it is representative and fits for a proof-
of-concept, which is accomplished by comparing the holonic
model with a usual approach to manage the oil supply chain,
which is based only on local optimization. The results of ap-
plying both approaches are presented in Table 1.

The local optimization approach recommends plan B in re-
fineries 1 and 2, since it leads to the highest supposed profit
(5291). On the other hand, the holonic model presents as op-
timum choice to adopt production plan C in both refineries,
with a total profit of 5918. Such a discrepancy comes from
the myopia of the local approach, which is unable to consider
aspects of higher echelons, such as the additional profit re-
sulting from sales of surplus products to SM, or the penalties
incurred by not having product enough to supply all customer
demands. Therefore, the proposed model generates a global
gain of about 12 % on account of the whole chain integration.

7 Conclusions and Future Work
In this paper, we have defined a Holonic Constraint Optimiza-
tion Problem (HCOP), which combines the distributed opti-
mization constraint approach with the holonic multi-agent ap-
proach to take advantage of the best of both worlds. On one
hand, since the constraint model provides a tight integration
of the involved entities, it allows optimization. On the other
hand, the holonic approach makes it possible to represent the
intrinsic recursive nature of a category of optimization prob-
lems, such as the supply chain management. In addition, it
was developed the meta-algorithm HCOMA for the solution
of the HCOP. Since it is a meta-algorithm, it makes it possible
to integrate different optimization algorithms, which may be
chosen according to each specific problem.

In a future work the model will be extended to include
more complex holarchies with multipart agents. Furthermore,
it will be treated the environmental parameters and their influ-
ence on the stability of the holonic solution. In other words, it

will be studied how an environmental perturbation propagates
between echelons, and the possible advantages of the pro-
posed model to tackle such kind of changes. Another point to
be investigated is how the communication problems between
neighboring echelons may harm the quality of a HCOP so-
lution. Finally, it will be developed a prototype based on a
case study of the oil supply chain, where the HCOMA will
be implemented using as components centralized optimiza-
tion algorithms already available in the oil industry.
Acknowledgment
Jaime Simão Sichman is partially supported by CNPq/Brazil.

References
[Gerber et al., 1999] C. Gerber, J. Siekmann, and G. Vierke.

Holonic multi-agent systems. Research Report, 99(3),
1999.

[Hilaire et al., 2008] V. Hilaire, A. Koukam, and S. Ro-
driguez. An Adaptative Agent Architecture for Holonic
Multi-Agent Systems. ACM Transactions on Autonomous
and Adaptive Systems, 3(1), 2008.

[Koestler, 1967] A. Koestler. The Ghost in the Machine.
Hutchinson ‘I&’ Co, London, 1st edition, 1967.

[Mailler and Lesser, 2004] R. Mailler and V. Lesser. Solving
distributed constraint optimization problems using coop-
erative mediation. In Proceedings of Third International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), pages 438–445. IEEE Computer
Society, 2004.

[Marcellino and Sichman, 2010] F. J. M. Marcellino and
J. S. Sichman. Oil industry supply chain management as
a holonic agent based distributed constraint optimization
problem. In AILog - ECAI 2010, Lisbon, Portugal, 2010.

[Modi et al., 2006] P. J. Modi, W. Shen, M. Tambe, and
M. Yokoo. Adopt: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelli-
gence, 161:149–180, 2006.

[Petcu and Faltings, 2004] A. Petcu and B. Faltings. A dis-
tributed, complete method for multi-agent constraint opti-
mization. In Proceedings of the Fifth International Work-
shop on Distributed Constraint Reasoning (DCR2004) in
CP 2004, 2004.

[Petcu and Faltings, 2005] A. Petcu and B. Faltings. A scal-
able method for multiagent constraint optimization. In
Proceedings of the International Joint Conference on Ar-
tificial Intelligence, pages 266–271, 2005.

[Petcu et al., 2007] A. Petcu, B. Faltings, and R. Mailler. Pc-
dpop: a new partial centralization algorithm for distributed
optimization. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 167–172, Hy-
derabad, India, 2007.

[Yokoo et al., 1992] M. C. Yokoo, E. H. Durfee, T. Ishida,
and K. Kuwabara. Distributed constraint satisfaction
for formalizing distributed problem solving. In Inter-
national Conference on Distributed Computing Systems,
pages 614–621, 1992.

Fernando J. M. Marcellino, Jaime Sichman

42

Flexible routing combing Constraint Programming, Large Neighbourhood Search,
and Feature-based Insertion

Philip Kilby1,2 and Andrew Verden 1

1 NICTA, 2 Australian National University
Philip.Kilby@nicta.com.au, Andrew.Verden@nicta.com.au

Abstract
Vehicle Routing Problems in the Operations Re-
search and Artificial Intelligence literature often
allow only standard constraints plus (optionally)
one “side” constraint. However, in practice, every
problem has a number of side constraints, some of
which have never been seen in the literature. This
paper describes an architecture for handling such
arbitrary side constraints, based on Constraint Pro-
gramming, Large Neighbourhood Search, and so-
phisticated insertion methods. This architecture al-
lows many problems that arise in fleet logistics to
be solved efficiently.

1 Introduction
In the classical Vehicle Routing Problem (VRP), a set of cus-
tomers must be visited by a fleet of vehicles at minimum
cost. Typically, a constraint on the capacity of each vehicle
is observed. In the VRPTW, an additional constraint forcing
the visit time to fall within a given time window is also en-
forced. For surveys on methods for these classical problems,
see [Toth and Vigo, 2002; Marinakis and Migdalas, 2007].

However, in many problems in logistics, while the basic
structure of delivery by vehicles to locations is the same,
problems exhibit a wide variety of additional constraints.
These constraints can be fairly general - for example a con-
straint on vehicle re-use that allows a vehicle to perform sub-
sequent routes. Some constraints, however, are very spe-
cific to a particular workplace, and not likely to be see again
(for example overtime allowed only if no more than 5 days
worked in the last seven, and also 6 hours break between the
previous overtime shift and the last shift where a B-double
vehicle was driven).

In this paper we examine methods which allow a wide va-
riety of side constraints to be handled simultaneously. The
system uses a combination of Constraint Programming (CP)
and Operations Research (OR) techniques to achieve an effi-
cient and flexible solution technique.

We begin with a description of the types of problem we
wish to solve. We then describe an architecture that can
handle these types of problem efficiently. We then sug-
gest a solution technique based on Large Neighbourhood
Search ([Shaw, 1997]) and insertion methods [Solomon and

Desrosiers, 1988]. Insertion methods build a solution by in-
serting one visit at a time into an emerging route set. Al-
though some insertion methods can give good results over a
wide variety of problems, we show how bespoke insert meth-
ods offer a modular way of tailoring the solution method to
speed up solution of problems with particular side constraints.

2 Problem Description
We wish to supply goods to n customers. Each customer or-
der i specifies the location for service (li), and the quantity
of goods required (qi). A fleet of m vehicles is available to
perform deliveries. Vehicle k has capacity Qk. We are given
the cost of travel between each pair of customers (cij).

In the most basic form of the problem, we wish to find a set
of routes, one for each vehicle, such that customer requests
are satisfied at minimum total cost, subject to the constraint
that the total quantity of deliveries assigned to each truck does
not exceed the truck capacity.

In this paper we use the term route to mean the sequence
of customer visits performed by a truck.

This sort of formulation can represent problems where
goods are delivered, or all goods are picked up, or problems
where a service is provided.

Some additional problem variants and constraints have
been studied in the Operations Research and Artificial Intel-
ligence literature

• Time Windows, where the allowed times for the visit
(earliest start time, latest start time) are specified (See
[Bräysy and Gendreau, 2005] for a recent survey).

• Request/Request compatibility constraints specify that
some pairs of visits cannot be assigned to the same route,
or that they must be assigned to the same route. For ex-
ample, it may not be permitted to carry particular chem-
ical together on the same vehicle.

• Request/Vehicle compatibility constraints are similar,
but they specify that some requests must be carried by
a particular vehicle or must not be carried by a particular
vehicle. [Nakari et al., 2007] discusses problems with
compatibility constraints.

• Pickup and Deliver Problem (PDP) constraints. Prob-
lems where goods are picked up at one location, and
delivered to another. The PDP constraints ensure the

43

goods are picked up before they are delivered, and that
the same route picks up and delivers. See [Savelsbergh
and Sol, 1995] for a survey of PDP type problem and
solution methods.

These basic constraints together also define the General
Vehicle Routing Problem [Goel and Gruhn, 2008]. However,
we wish to be able to solve problems with even more gen-
eral constraints. Constraints such as the following have been
investigated individually in the literature

• “Blood bank” constraint – a pickup and deliver where
the pickup can occur any time in the morning, but deliv-
ery must be within 20 minutes of pickup. Because the
delivery time window cannot be specified a-priori, this
type of constraint cannot be expressed by the usual time
window constraint.
• Multi-delivery (split-delivery) routing. Here, customer

quantities may exceed the size of the largest truck, and
so must be visited more than once. This type of prob-
lem is common in line-haul routing, where deliveries are
made from a production facility to distribution centres
(e.g. [Archetti et al., 2006]).
• Loading dock constraint – Vehicle dispatch is limited by

the number of docks available for loading. Alternatively,
in PDP problems where there are multiple deliveries to
a single customer, the number of deliveries that can be
performed simultaneously is limited by the number of
docks.
• Movable partition constraint. In this problem, multiple

commodities are carried simultaneously. While the total
capacity of the vehicle is fixed, each time it is loaded a
decision can be made as to how much capacity is given
to each commodity.
• Prize collecting problems, where visits have different

values, and we wish to maximise the value of visits as-
signed less travel cost. This may mean that some visits
are left unassigned ([Feillet et al., 2005] discusses the
case where there is a single vehicle).
• Route rendezvous constraints – that ensure different

routes rendezvous to transfer goods. The time of the
rendezvous may depend on the duration of individual
routes.

These constraints are usually examined individually – that
is, there is the usual vehicle routing problem plus one set of
extra constraints that are known a-priori.

Our aim is to solve problems with a variety of these extra
constraints applying simultaneously, while at the same time to
avoid making the solution method dependent on which con-
straints are actually present.

The NICTA Intelligent Fleet Logistics project has devel-
oped a system called Indigo that is able to handle a variety
of problems in logistics. Its architecture and methods are de-
scribed in the following sections.

3 Architecture
Constraint Programming is an obvious technique to express
the side constraints seen in practical Vehicle Routing prob-

lems, and to support solving instances of these more general
problems.

However, constraint programming can introduce an expen-
sive overhead to handle some constraints. For instance, if a
capacity constraint is tied to the variable which indicates the
route to which the visit is assigned, then each time that vari-
able is altered, or any time the load changes on any route
which is within the domain of that variable, then the capacity
constraint will be re-checked. This will ensure correct opera-
tion, but can lead to much redundant checking.

For this reason, the Indigo system has two “classes” of con-
straint.

The first class of constraints (called “native” in this con-
text) include all the constraints of the General Vehicle Rout-
ing Problem [Goel and Gruhn, 2008]:

• Capacity constraints (across multiple commodities but
with fixed capacity for each commodity)

• Usage constraints, that limit the total usage of resources
such as time and distance accumulated during each run.

• Time window constraints, specifying earliest and latest
start time.

• Pickup-and-Deliver constraints, enforcing precedence
and same-route constraints between a pair of visits.

• Request/Request and Request/Vehicle compatibility
constraints

Native constraints are handled very efficiently by the sys-
tem with minimal interaction with the Constraint Program-
ming system. Any decision made by the solver is guaranteed
to observe all of the native constraints.

However, additional side constraints can be specified and
handled using the CP system. In the long-term, we wish to
be able to use the Zinc language [Marriott et al., 2008] to
specify these constraints, and then solve the problem within
the G12 system [Wallace and the G12 Team, 2009]. In the
short term, however, propagators for each side-constraint are
hand coded, using a simple bespoke constraint programming
system.

Even with some hand-coding still required, the advantage
of using a CP paradigm is clear. The propagator for each con-
straint is a self-contained piece of code that is only “known”
to the CP system. The alternative in traditional OR systems
would require the main body of VRP solving code to be mod-
ified for each new constraint, which makes maintenance dif-
ficult, and unexpected interactions almost inevitable.

Special, separate modules also convert different variants of
the problem into standard form. For multi-delivery routing,
for instance, a separate module breaks each order quantity
into smaller pieces that can be assigned efficiently to trucks
of various sizes.

The advantage of approach handling native constraints in-
ternally was demonstrated in [Kilby et al., 2010]. It was
shown that handling these constraints internally, rather than
as constraints in the CP system, decreases the CPU time by a
factor of about 2. It also slightly improves solution quality in
some cases.

Philip Kilby, Andrew Verden

44

4 Interaction with the CP System
The Indigo system is integrated with a CP system. The CP
system has a number of variables for each visit and route, in-
cluding: A successor variable indicating which visit should
follow the given visit. A predecessor variable indicating
which visit should precede the given visit. A route variable
indicating which route the visit is assigned to. If time is used,
then arrive time and service start time variables are used. For
each assigned visit, and for each commodity, there are vari-
ables specifying the cumulative load.

Constraints can be posted in the CP system to limit the
values these variables can take. For instance, in the case of the
blood donor constraint, as soon as the pickup visit is assigned,
then the delivery visit will have its service start time variable
constrained.

In operation, the Indigo system acts as a variable/value
choice heuristic for the underlying CP system. Indigo main-
tains an internal representation of an emerging route set, in-
cluding the list of partially built routes, plus the list of yet-to-
be assigned visits.

Each time Indigo is called, it chooses a visit to insert, and a
position in which to insert it. It can then propagate the effects
of this choice to the CP system.

As discussed in [Kilby and Shaw, 2006], chronological
backtracking in CP imposes limits on the amount of infor-
mation that can be propagated to the CP system. For instance
if the Indigo system decides to place visit 10 after visit 2, we
cannot bind the successor variable of visit 2 just yet. If we
were to make the assignment succ[2] = 10, then we would
not be able to insert any other visit after 2 for the rest of the
execution of the procedure. So instead, we make all propaga-
tions that can be inferred from the assignment. For instance,
we can remove 10 from the successor variable of every visit
except 2. We can also update the route variable for visit 10.
A number of other propagations are possible. For example,
let us say that visit v will follow visit p in route r

• All other assigned visits (except p) can be removed from
the predecessor variable of v. Similarly the successor
variable of v can be updated.
• If we assume the triangle inequality for time

(∀a, b, c, tac ≤ tab + tbc) then we know that we
cannot arrive at v any earlier than we currently do. We
can therefore update the bound on the arrival time to be
at most the current arrival time.
• The latest arrival time cannot be any later than the

current value (again assuming the triangle inequality).
Hence we can also update the upper bound on the arrive
time to be the current latest feasible arrival time.
• In pickup-up only problems, the load on any commodity

cannot be less than the current value. We may therefor
update the appropriate bound on the load variable.

If, during execution of the propagations following an as-
signment, a failure occurs (i.e. CP has identified an inconsis-
tency) then the internal data structure within Indigo must be
updated as part of the backtracking of the CP system. The CP
system will ensure that the same assignment is not attempted
again in the future.

When the Indigo system is subsequently called, changes to
the successor, predecessor or time variables must be noted,
and the next choices must be consistent with these values.

5 Solution method
Like many VRP solution methods, Indigo relies on local
search methods to improve an initial solution. Many local
search techniques for routing problems have been developed
(for example 2-opt, 3-opt, Or-opt). However, these methods
that move directly from one solution to another do not make
use of the full power of CP.

Again, local search methods are limited by the chronologi-
cal backtracking restrictions imposed by the CP architecture.
Hence, methods that build up a solution one piece at a time,
using CP search procedures, are preferable to local search
type methods such as those above that move directly from
solution to solution.

Large Neighbourhood Search (LNS) [Shaw, 1997] is a lo-
cal search procedure where part of a solution is destroyed,
and a then a new solution created by finding new values for
the freed variables. This method uses exactly the sort of incre-
mental solution building method that can exploit propagation
in CP to guide the solution towards good, feasible solutions.

The Indigo system draws on the work of Ropke and
Pisinger [Ropke and Pisinger, 2006] (R&Phere). Like that
work, it uses insertion methods to create an initial solution,
and then again to repair the solution in each iteration of LNS.
The LNS algorithm can be given as follows:

1 Create initial solution S

2 Choose a “destroy” method d

3 Create S′ by removing customers from S according to
method d

4 Choose an insert method i

5 Create solution S′′ from S′ by inserting customers ac-
cording to method i

6 If the acceptance method accepts solution S′′

7 Replace S with S′′

8 If iterations remain, return to line 2

This method is characterised by
• The destroy methods available at line 2
• The insert methods available at line 4
• The acceptance methods available at line 6
• The number of iterations available at line 8.
In this paper, we look only at enhancements to the insert

methods available at line 4 that allow for some of the more
general instances to be solved effectively. These methods are
described in the next section.

6 Insert methods
Insertion methods proceed by repeating two stages:

First, amongst all unassigned visits, the best position to in-
sert each is selected. Then, the visit which is to be inserted is
chosen. The visit is then inserted in its best position. Solomon

Flexible routing combing Constraint Programming, Large Neighbourhood Search, and Feature-based Insertion

45

[Solomon, 1987] seems to be the first to suggest this two-
score system.

The best insert position for each still-unassigned visit is
then updated. The method can then iterate until all visits have
been assigned a position.

In much previous work, only a limited number of features
are considered when making these two choices. In some
work, only minimum cost insertion is considered – i.e. vis-
its are always inserted in the position which gives rise to the
smallest increase in cost, and the visit with the smallest in-
crease is inserted first.

R&Pshow that using a combination of insertion methods
gives better results than a single method, as it allows different
methods to be used at different times. Running on benchmark
problems with limited constraints (PDP, time window and ca-
pacity constraints), R&Pidentified a set of insert methods that
gave good performance.

We wish to extend this idea, and use a variety of insertion
criteria when making these choices. We will show below how
this can be advantageous in real-world problems.

We will describe several criteria, or “features” which can
be used in either choosing where to insert a visit, or choosing
the visit to insert. Each criteria is described below. The de-
gree to which a particular feature is present is rated on a score
of 0 to 1, with 0 meaning “not present”, and 1, “present”.
Along with each feature, the “base” value which is used to
normalise the value (as described in Section 6.1) is also given.
If reversed is specified, then (1 - val) is returned, rather than
val. Two types of normalisation are also possible, as dis-
cussed in Section 6.2

The following symbols are used in the description below.
The visit v is to be inserted between p and s on vehicle k. The
cost of insertion is c′ = c(p, v) + c(v, s)− c(p, s).

Route domain Favour visits with few feasible routes. Val is
number of routes v can be feasibly inserted into. Base is
total number of routes. Reversed.

Num ins pos Favour visits with few feasible insert positions.
Val is the number of feasible insert positions. Base is
number of assigned visits. Reversed

Distance to depot Favour visits far from a depot. Val is dis-
tance to the closest route start or end. Base is max dist
to route start or end.

Value For use in prize-collecting problems, favours inserting
high-value visits first. Value is prize-value of the visit.
Base is max prize-value over all visits.

Load Favour largest load first. Value is load. Base is max
vehicle capacity

Nearest neighbour Encourages v to be inserted near its
neighbours. Val is min (c(p, v), c(v, s). Base is distance
to v’s 10th-nearest neighbour. Reversed. Normalised
with method 2.

Min insert cost Cheapest insert first. Value is c′. Base is
twice the average insert cost. Ave insert cost is (Total
cost of inserted visits) / (number of inserted visits). Re-
versed. Normalised by method 2.

Max insert cost Reverse of above. Calculated same way, but
not reversed.

Regret, 3-Regret, 4-Regret See below. Base is same as
Minimum insert cost. Normalise by method 2.

Rand Randomise slightly. Val is a uniform-random number
in [0,1).

Time Window width Encourages smallest time window to
be inserted first. Val is width of v’s time window. Base
is max of time window widths. Reversed.

Time Window end Encourages visit with latest time win-
dow to be inserted first. Val is the end time of the last
time window. Base is max time window end.

Wait time Encourages vehicles not to arrive at a location be-
fore the start time window (as the vehicle must then wait
for the time window to open). Val is the time the vehicle
must wait at v before service starts. Base is (Last time
window) / 10. Reversed.

Pickup Late, Deliver early Encourages vehicle to do deliv-
eries at a location before doing pickups.

Lost slack Encourages spare time to be preserved. Val is
how much “spare time” (difference between arrival time
and time window end) is lost at s. Base is max time
window width. Reversed. Normalised using method 2

Fill vehicle Used when problem has a bin-packing flavour,
and favours inserts that fill the vehicle. Value is spare
capacity after insert. Base is max capacity. Reversed.

Balance routes Encourages routes to have similar length, as
measured by difference between shortest and longest
route. Penalise adding to longest route, and reward
adding to shortest.

6.1 Base values
Base values are used to normalise the feature values into the
range [0,1] by diving val by base. Since we wish the values
to be comparable, we must be careful in the base value cho-
sen. For example, for nearest neighbour, the “safe” base is
the length of the longest arc in the problem. However, this is
likely to be very large, and not ever used in a solution. We
therefor use a base value which is the distance to the 10th-
nearest neighbour, as the neighbour of most visits is likely to
come from this set.

6.2 Normalisation
The basic method of normalisation is to simply divide by the
base. This is done whenever the base is a guaranteed maxi-
mum for the feature value (e.g. maximum time window width
as base for the time window width feature)

However, for reasons outlined above, some base values are
“optimistic” or heuristic values, and can be exceeded. Since
we still wish to rank values that are greater than the base
value, an alternative, non-linear normalisation is used. To
normalise a value v with a base b, the normalised value is
calculated as follows

tmp = max(v/b, 0); return tmp/(0.5 + tmp);

Philip Kilby, Andrew Verden

46

This normalisation always falls in the range [0,1]. The values
0 to 1 map to normalised values 0 to 0.6667, with 0.5 mapping
to 0.5. The value of 0.6667 makes values normalised using
this method approximately comparable to values normalised
with the first method.

6.3 Regret
Regret is based on the difference between the best and next-
best insert positions for a visit. If there is a big difference (a
large regret), then if the visit does not get its favoured posi-
tion, the effect on the objective is high. The method therefore
chooses the visit with maximum regret to insert first.

More formally, if the minimum cost to insert visit i in route
k is cik, and the permutation o(k) permutes the routes into
increasing order; i.e. ci,o(1) ≤ ci,o(2) ≤ ... ≤ ci,o(m). Then
regret(i) is

ci,o(2) − ci,o(1)

3-Regret allows slightly more look-ahead, taking the first
three positions into account: Then 3regret(i) is

((ci,o(2) − ci,o(1)) + (ci,o(3) − ci,o(1)))/2

4-regret is defined analogously, over the cost of the four
cheapest routes.

6.4 Implementation
All of these methods (except the regret methods) can be cal-
culated using just the visit to be inserted and the predecessor
in the route. In the Indigo system, features are defined us-
ing a base class. New features can be incorporated easily by
specialising the base class to calculate the required value.

7 Use of features
Features are combined using weights. Two separate weight
sets are used – weight set 1 is used to decide which visit to
insert; weight set 2 is used to decide where to insert it. Each
score is simply the scalar product of the weights and the fea-
ture values.

For example, selecting the visit to insert using 3regret with
a small amount of randomness; and position to insert using
min-insert-cost, the following could be used
Feature set 1: { 3regret, rand }. Weight set 1: { 0.95, 0.05 }.
Feature set 2: { min-insert-cost }. Weight set 2: { 1.0 }.

For efficiency, only those features with a non-zero weight
need to be evaluated. Weight sets can be general-purpose, or
specific for a a portfolio of instances.

The new insert features allow flexibility in non-standard
problems. For instance, in a multi-delivery pickup-and-
delivery problem there may be multiple pick-ups and deliv-
eries at a single location. While this type of problem is seen
relatively often in practice (it is one way of modelling a vehi-
cle leaving and returning to the depot multiple times) it does
not appear in benchmarks. There is nothing in a standard
VRP heuristic which makes us deliver before we pick up at
the same location. The “pickup-early, deliver-late” ensures
this sequence. However, in standard benchmarks, there is no
call to use such a feature. It is only in the more flexible rout-
ing that it is useful – but there it is indispensable.

8 Computational testing
In order to test the effectiveness of the architecture, the sys-
tem was tested on some standard benchmarks. These do not
exhibit the flexibility of the system, but indicate the effective-
ness on standard problems.

The system was tested on the VRPTW benchmark prob-
lems of Solomon [Solomon and Desrosiers, 1988] with
100 customers, and the extended Solomon benchmarks of
Gehring and Homberger [Gehring and Homberger, 1999]
with between 200 and 1000 customers.

The experimental setup used “standard” parameters similar
to those used in R&P

• Accept function is Simulated with a temperature gradi-
ent of 0.99975, and an initial probability chosen so there
is a 50% chance of accepting an increase of 5%.

• Removal selection functions and Insertion functions as
per R&P.

• Adaptive learning of which selection and which inser-
tion method to use, using rewards similar to those used
by R&P

• 30,000 iterations of LNS

• 50 customers removed for size 100 and 200 problems.
100 customers removed for larger problems.

• 5 runs of each problem, best solution reported

Because the current Indigo system does not have a feature
to reduce the number of vehicles, the problems were mod-
ified so that only the number of vehicles in the best-known
solution were available to the system. This makes the com-
parison a little less fair, as most systems initially try to reduce
the number of vehicles. However, it is consistent with many
real-world problems where the vehicle fleet is fixed a-priori.

Because of limited space to report we give just the basic
results. We express performance as a ratio of the increase as
a ratio of best-known solution. E.g. 1.02 means the results
was 2% higher than the best-known solution.

All problems were solved with the best-known number of
vehicles. We produced new, best-known solutions to 83 of
the 300 benchmarks. Table 1 shows the results. Size gives the
number of customers in the problems; Best gives the number
of problems where a “new best” solution was found; Mean is
the mean increase; 80% gives the 80th percentile of increase
(i,e, 80% of values were less than this value); and Max gives
the maximum increase over best-known solution. CPU gives
mean time per run in CPU seconds. The tests used one CPU
of an 8-core 32 bit Intel Xeon running at 2GHz.

Source Size Best Mean 80% Max CPU
Solomon 100 0 1.01 1.01 1.05 53
G & H 200 11 1.01 1.02 1.05 120
G & H 400 13 1.01 1.03 1.06 487
G & H 600 19 1.02 1.04 1.10 766
G & H 800 18 1.02 1.05 1.11 1108
G & H 1000 22 1.03 1.06 1.14 1450

Table 1: Results on benchmark problems

Flexible routing combing Constraint Programming, Large Neighbourhood Search, and Feature-based Insertion

47

For the smaller problems (100-200 customers) these results
are very good for relatively small CPU times. Since other sys-
tems often run for much longer than the maximum 30 min-
utes allowed this system, the results for larger problems are
reasonable, although some work is required to ensure the sys-
tem performs as well on the larger problems as it does on the
small.

9 Future work
With a large number of features, the space of possible weights
is very large. The task of finding effective feature weights can
be very difficult. We are currently looking a two methods for
choosing weights: static and dynamic. Static methods will
calculate a weight set a-priori, using a portfolio of similar
problems from a given user. Dynamic method we make use
of the fact that in LNS we are essentially solving the same
problem many thousands of times. We can dynamically adapt
the weight set, and test the effectiveness of the new set in
subsequent runs.

We are also looking at ways of increasing the search diver-
sity in larger problems, to improve the performance on some
of the larger problems reported in section 8.

10 Conclusions
We have described an architecture for solving a variety of
logistics problems, including, for instance, line-haul prob-
lems that are not well suited to traditional VRP methods.
This architecture has the advantage of handling many of the
most common constraints very efficiently, while allowing ad-
ditional side constraints to be specified and handled in a mod-
ular and flexible way by an underlying Constraint Program-
ming system.

We have argued that sophisticated insertion methods make
an ideal partner for Large Neighbourhood Search and Con-
straint Programming for solving real-world vehicle routing
problems. We have given a method of calculating and com-
bining a number of feature scores, that allows insertion meth-
ods to be tailored more easily to the characteristics of the
problem at hand.

Acknowledgements
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References
[Archetti et al., 2006] C. Archetti, M. G. Speranza, and A. Hertz. A

tabu search algorithm for the split delivery vehicle routing prob-
lem. Transportation Science, 40(1):64–73, 2006.

[Bräysy and Gendreau, 2005] Olli Bräysy and Michel Gendreau.
Vehicle routing problem with time windows, part I: Route con-
struction and local search algorithms. Transportation Science,
39(1):104–118, 2005.

[Feillet et al., 2005] Dominique Feillet, Pierre Dejax, and Michel
Gendreau. Traveling salesman problems with profits. Trans-
portation Science, 39(2):188, 2005.

[Gehring and Homberger, 1999] H. Gehring and J. Homberger. A
parallel hybrid evolutionary metaheuristic for the vehicle routing
problem with time windows. In K. Miettinen, M. Makela, and
J. Toivanen, editors, Proceeding of EUROGEN99 - Short Course
on Evolutionary Algorithms in Engineering and Computer Sci-
ence,, pages 57–64. University of Jyväskylä, 1999.

[Goel and Gruhn, 2008] Asvin Goel and Volker Gruhn. A general
vehicle routing problem. European Journal Of Operational Re-
search, 191(3):650–660, 2008.

[Harvey and Ginsberg, 1995] William D. Harvey and Matthew L.
Ginsberg. Limited discrepancy search. In Chris S. Mellish, edi-
tor, Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI-95), volume 1, pages 607–615,
Montréal, Québec, Canada, 1995. Morgan Kaufmann.

[Kilby and Shaw, 2006] Philip Kilby and Paul Shaw. Vehicle rout-
ing. In F. Rossi, P. Van Beek, and T. Walsh, editors, Handbook of
Constraint Programming, Foundations of Artificial Intelligence,
chapter 23, pages 801–836. Elsevier, 2006.

[Kilby et al., 2010] Philip Kilby, Andrew Verden, and Lanbo
Zheng. The cost of flexible routing. In Proceedings of the Tri-
ennial Symposium on Transportation Analysis (TRISTAN) 2010,
2010. To appear.

[Marinakis and Migdalas, 2007] Yannis Marinakis and Athanasios
Migdalas. Annotated bibliography in vehicle routing. Opera-
tional Research, 7(1):27–46, 2007.

[Marriott et al., 2008] Kim Marriott, Nicholas Nethercote, Reza
Rafeh, Peter J. Stuckey, Marı́a Garcı́a de la Banda, and Mark
Wallace. The design of the Zinc modelling language. Con-
straints, 13(3):229–267, September 2008.

[Nakari et al., 2007] Pentti Nakari, Olli Bräysy, and Wout Dullaert.
Communal transportation: Challenges for large-scale routing
heuristics. Reports of the Department of Mathematical Informa-
tion Technology Series B. Scientific Computing B6/2007, Uni-
versity of Jyväskylä, 2007.

[Ropke and Pisinger, 2006] Stefan Ropke and David Pisinger. An
adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science,
40(4):455–472, 2006.

[Savelsbergh and Sol, 1995] M.W.P. Savelsbergh and M. Sol. The
general pickup and delivery problem. Transportation Science,
29(1):17–39, 1995.

[Shaw, 1997] Paul Shaw. A new local search algorithm providing
high quality solutions to vehicle routing problems. Working pa-
per, University of Strathclyde, Glasgow, Scotland, 1997.

[Solomon and Desrosiers, 1988] Marius M. Solomon and Jacques
Desrosiers. Time window constrained routing and scheduling
problems. Transportation Science, 22(1):1–12, February 1988.

[Solomon, 1987] M. Solomon. Algorithms for the vehicle routing
and scheduling problem with time window constraints. Opera-
tions Research, 35:254–265, 1987.

[Toth and Vigo, 2002] Paolo Toth and Daniele Vigo, editors. The
Vehicle Routing Problem, volume 9 of SIAM Monographs on Dis-
crete Mathematics and Applications. SIAM, Philadelphia, PA,
2002.

[Wallace and the G12 Team, 2009] Mark Wallace and the G12
Team. G12 – towards the separation of problem modelling and
problem solving. In Proc. CP-AI-OR’09, volume 5547 of Lecture
Notes in Computer Science, pages 8–10. Springer, 2009.

Philip Kilby, Andrew Verden

48

Optimising Efficiency in Part-Load Transportation∗

Srinivasa Ragavan Devanatthan, Stefan Glaser and Klaus Dorer
Hochschule Offenburg, Offenburg, Germany

sdevanat@stud.hs-offenburg.de
{Stefan.Glaser, Klaus.Dorer}@hs-offenburg.de

Abstract
Existing approaches solving multi-vehicle pickup
and delivery problems with soft time windows typ-
ically use common benchmark sets to verify their
performance. However, there is a gap from these
benchmark sets to real world problems with respect
to instance size and problem complexity. In this
paper we show that a combination of existing ap-
proaches together with improved heuristics is able
to deal with the instance sizes and complexity of
real world problems. The cost savings potential
of the heuristics is compared to human dispatching
plans generated from the data of a European carrier.

1 Introduction
With an increase in transport business and many mergers be-
tween major logistics companies, it becomes increasingly dif-
ficult for the the dispatchers to have an overview of the orders
relevant to their business. Consequently, opportunities to load
orders together on the same vehicle are missed frequently, re-
sulting in increased costs.

Many optimisation algorithms fail to improve the situation
due to the size of the problem instances and the complex-
ity of the constraints involved. In this paper we show that a
combination of existing approaches together with improved
heuristics is able to deal with the instance sizes of real world
problems and reduce the costs of transport plans considerably.
To do so we have used real data of a major logistics carrier
and compared the results of our approach with the transport
plan that has been created by human dispatchers and has been
performed by the vehicle fleet.

The rest of the paper is organised as follows: Section 2
introduces the transport domain. Section 3 explains how real
world problem instances can be addressed with results shown
in section 4 before we conclude in Section 5.

2 Domain
The multi-vehicle pickup and delivery problem with soft time
windows (m-PDPSTW) [Psaraftis, 1995; Dorer and Calisti,

∗This work is supported by the IngenieurNachwuchs program of
the German BMBF grant number 17 N25 09.

2005] consists of finding optimal plans for serving transporta-
tion requests of customers. The problem is ‘single-vehicle’
if all transportation requests are served by a unique vehicle.
Here, we deal with a ‘multi-vehicle’ problem where multiple
vehicles can be used for transporting all orders. The vehicles
may be of different type and have different capacities. As
opposed to vehicle routing problems [Laporte and Osman,
1995], in pickup and delivery problems (PDP), vehicles do
not necessarily start or end in the same location. Transporta-
tion requests may have the same, but usually different, pickup
and delivery locations. The pickup and delivery of orders has
to occur within a specific time window, even though time con-
straints can be possibly violated up to some tolerated degree.
These kind of problems are called PDP with soft time win-
dows.

Table 1 presents different approaches from literature that
directly handle PDPTW problems. It is worthy of note, that
the approaches defined in the table dealt with benchmark in-
stances while we report on results on significantly larger in-
stance size from real world.

A rich overview on different versions of the problem as
well as a collection of solution methods and applied heuristics
can be found in [Parragh et al., 2008a; 2008b].

In the following, we specify the information and con-

Method Author(s) Characteristics
Insertion
heuristic

[Jaw et al.,
1983]

300 orders, 24 vehi-
cles

Clustering fol-
lowed by de-
composition

[Dumas et
al., 1991]

880 orders, 53 vehi-
cles

Reactive tabu
search

[Nanry and
Barnes,
2000]

100 orders, 10 ve-
hicles, based on
VRPTW instances of
[Solomon, 2005]

Branch and cut
algorithm

[Ropke et al.,
2007]

40 instances of
[Savelsbergh and
Solomon, 1998]

Insertion
heuristic with
k-opt

this paper 2137 orders with
1736 available
vehicles

Table 1: Methods for m-PDPTW

49

straints of the domain relevant for our work. The term node
is used to indicate the combination of a stop location and the
corresponding time (arrival and departure time) for a given
vehicle. A leg is the path between two nodes. A route is the
sequence of nodes a vehicle visits. The vehicle is assumed
to be empty at the beginning and at the end of a route. The
sum of all routes is called the delivery plan representing the
schedule of each vehicle. The quality of the solution is the
cost of the delivery plan (see Section 2.2).

2.1 Initial Information
The information required to solve transport optimisation is,
a set of transport requests or orders and the set of vehicles
that are available. Also information for the distance and drive
time required for driving any possible leg has to be available.

Every order specifies: order type, capacity demand (load-
ing meters), weight, pickup location, pickup time window,
pickup service time, delivery location, delivery time window,
delivery service time and the time at which the order is known
to the system.

The vehicle definitions include: vehicle type, capacity (in
loading meters and weight), availability location and time. A
mathematical analysis of the specific data used is presented
in chapter 4.

2.2 Cost Model
Cost reduction is a main driving factor for logistics compa-
nies. Cost is therefore used as the objective function for op-
timisation. The cost model has to make sure that solutions
are preferred by the optimisation algorithm that are cheaper
to perform in practice. It has therefore to reflect the real costs
of the companies as close as possible.

Two types of cost models are typically distinguished: fix-
variable for own vehicles and matrix-based for subcontracted
vehicles. Costs for own vehicles of the fleet are calculated as

cfv = cfix + cvar (1)

with cfix = kfix ∗ t and cvar = dempty ∗ kempty + dloaded ∗
kloaded. kfix is a constant representing the fix costs per day.
It may depend on the vehicle type in general, but did not in the
context data of this paper. t is the number of days the route
covers. dempty is the sum of distance of all legs driven empty
including a possible empty leg to the first pickup location and
a possible empty leg to drive home at the end of the route.
dloaded is the sum of distance of all legs where at least one
order is loaded. kempty and kloaded are costs per kilometre
for empty or loaded legs respectively.

Costs for subcontracted or spot market vehicles are typi-
cally based on distance and load matrices.

cma =
n∑

i=1

di ∗ li ∗ kma(d, l) (2)

where n is the number of legs, di is the distance of leg i, li
is the load on leg i in loading meters and kma(d, l) is a func-
tion defining the costs per kilometre and loading meter. The
function is represented by a matrix defining different distance
and load classes with linear interpolation between the speci-
fied values. It is usually retrieved from historic data. Note

that this cost model does not account for fixed costs nor does
it take empty legs to the first pickup or after the last delivery
into account. Comparable entries of the cost constants in the
matrix are therefore typically much higher than kempty and
kloaded. In the context of this paper, two distance classes and
thirteen load classes have been used.

2.3 Constraints
The optimisation heuristics have to obey certain constraints
in order to create solutions that are drivable in reality.
• Load constraints:

– Precedence (pickup has to be before delivery);
– Pairing (pickup and delivery have to be done by the

same vehicle);
– Capacity limitation of a vehicle;
– Weight limitation of a vehicle;

• Time constraints:
– Earliest pickup and delivery;
– Latest pickup and delivery;
– Legal driving time regulations for drivers.
– Service times at pickup/delivery locations

In practice pickup and delivery times are typically treated
as soft constraints. This means that short delays are accepted
if they allow for better delivery plans. A soft constraint is de-
fined by a tuple< s, e, cf , cv > where s is a start value above
(below) which the condition is soft violated, e is an end value
above (below) which the constraint is considered hard vio-
lated, cf are the fix violation costs assigned if the constraint
is (soft) violated and cv are variable violation costs that grow
proportional to the amount of soft violation. The fixed vio-
lation costs can be used to control the number of violations.
The variable violation costs ensure that the amount of con-
straint violation is kept low and only accepted if the violation
cost is less than the benefit of violating the constraint.

3 Implementation Strategies
The classification of the problem as NP-Hard and the size of
the problem in reality, thousands of orders to be served with a
fleet of hundreds of vehicles, impairs the application of exact
methods. Most exact methods, which work well for small
specific problem instances in the absence of many constraints,
fail to work acceptably fast in practice. Heuristics find good
solutions in reasonably short time, which is the major concern
in the real world.

A straight-forward method to apply insertion heuristic to
build an initial solution, followed by a tour improvement
heuristics seems the first best tentative approach towards a
problem of the size we have handled.

3.1 Insertion Heuristic
The insertion heuristic builds a set of routes by inserting one
order at a time. The number of routes is freely determined
while inserting. It is not expected that it produces the optimal
set of routes for transporting the orders. The main idea is
to build an initial feasible solution which is then optimised
for the objective function. The quality of this initial solution

Srinivasa Ragavan Devanatthan, Stefan Glaser, Klaus Dorer

50

depends on the sequence in which the orders are inserted. In
our case orders have been sorted by earliest delivery time.

A new order is inserted at the best feasible insertion place
over every route. It considers the objective function of the
problem as the insertion cost. For TSP problems, the objec-
tive function is distance and an example would be the smallest
detour in distance [Azi et al., 2010], which may not find the
optimal tour, but would certainly produce an acceptably short
route.

For the m-PDPSTW that we handle, each route in the so-
lution is a TSP but with constraints which impose precedence
of the pickup node before the delivery node. This is referred
to as the pickup and delivery-TSP or PDTSP, where the ob-
jective function is the total cost.Here, we require a simple
permutation heuristic which would find the cheapest point of
insertion of a new order on the route. This heuristic, cheapest
permutation, is described below.

Let (i0, . . . in) be the nodes on the route r. Let ip and id
be the pickup and delivery nodes of a new order that has to
be inserted on the route. The pickup node ip is inserted as
(ik−1, ip, ik), 1 ≤ k ≤ n, i0 is the start node and ik−1 and
ik are two adjacent pickup or delivery nodes on the route.
For each partially inserted route, (i0, . . . , ip, ik, . . . , in), the
delivery node id is inserted as (il−1, id, il), k ≤ l ≤ n. If the
pickup-insert fails, the following permutations of delivery-
inserts are not made.

For each order, the insertion heuristic is run on every route
and the cheapest route is chosen. If no existing vehicle is
able to transport the order, a new vehicle with a new route is
created to handle this order. The set of all routes serviced by
individual vehicles constitutes a delivery plan and is an initial
solution.

The way in which precedence constraints are incorporated
during the solution process is of particular importance to the
effectiveness of this heuristic for this problem. It implic-
itly eliminates some of the infeasible PDTSP solutions. The
heuristic is fairly quick mainly because it does not permute
the existing nodes on a route when an insertion is made. The
constraints are enforced at different levels of the heuristic.

• It is possible that the load constraints of the vehicle are
hard violated at node ip. These are physical restrictions
of the vehicle and cannot be soft violated. In such cases,
the corresponding permutations of delivery-inserts are
not made, reducing the feasible states.

• A pickup-insert could alter the time parameters of the
subsequent nodes after ip, which may produce a viola-
tion of the time constraints up to a certain limit. In these
cases, the subsequent nodes are one of the permutations
of the delivery-inserts. The heuristic first constructs the
route and then schedules. If scheduling fails, the route is
thrown away.

Soft constraint violations produce costs which are included
in the objective function of the problem. This ensures that an
order is allocated on a route with a soft violation only when
allocating the same order on all other routes is impossible or
produces a higher cost.

The driving plan may either be improved by applying re-
strictive constraints which enforce route quality at the time

of construction or by using tour improvement heuristics. Im-
provement may be achieved by a re-arrangement of existing
nodes in a route or the re-assignment of an order to another
route.

3.2 Tour Improvement Heuristic
The tour improvement heuristic aims to improve the quality
of the entire delivery plan by employing a local search with
k-change neighbourhood, simply referred as k-opt [Papadim-
itriou and Steiglitz, 1982; Helsgaun, 2006]. It has been ap-
plied for the travelling salesman problem and has been shown
to produce high quality solutions in polynomial time [Lawler
et al., 1985]. As far as we have seen, the k-opt has not been
applied for the m-PDPSTW. In this Section, we define a sin-
gle “change” for the m-PDPSTW and brief on the k-opt.

A new feasible solution can be obtained by performing a
single change to an existing solution. If k′ number of changes
are applied to the current solution, the new solution is then
described to be in the k′-neighbourhood. Depending on the
type of the problem, the parameter of change can be varied.
This is explained as follows.

Let R = {r1, r2, . . . rn} be the set of all routes. Each
route is serviced by a single unique vehicle. Let Oi =
{o1, o2, . . . ok} be the orders transported by route ri. It
should be noted that Oall =

∑n
i=1 | Oi | and Oi ∩ Oj = φ

for distinct i, j ∈ {1, . . . n}. As can be seen, here we assume
that each order is transported on a unique route. Additionally,
each route is assumed to be serviced by a unique vehicle.

A single change, k′ = 1, is then, removing an order from
the route it is transported on and inserting the order on an-
other route. This remove-insert pair is together considered as
a single change. Therefore, a removal is always followed by
an insert. It is possible that a route in the current solution
might violate constraints beyond their hard limit, either at the
time of removal or at the time of insertion of the order. In ei-
ther case, the new solution is not accepted as an improvement.
This ensures that all the orders transported in the current so-
lution are also transported in the successor solution.

In the case of TSP, a k-opt move changes a tour by replac-
ing k edges between existing nodes, with k other edges such
that a shorter tour can be obtained. For the problem instance
handled in this paper, a m-PDPSTW, k orders transported on
one route is replaced with k other orders from a different
route, such that the total cost is reduced. These k-changes
can be sequential as well as non-sequential. If a k-change
produces a better solution in terms of the objective function,
then this new solution is accepted as the current solution for
further improvement.

The pseudo-code for tour improvement is shown in Algo-
rithm 1. Picking routes in lines 4 and 5 is done in a brute
force approach iterating over all routes. As stop-criterion a
time limit as well as a maximal number of iterations was used.
Lines 7 to 13 perform a hill-climbing in the k′-neighbourhood
(not including the k′ − 1 neighbourhood).

In cases where the neighbourhood does not have feasible
and cheaper solutions, the neighbourhood is enlarged i.e.,
k′ = k′ + 1 changes are made to search for an improvement
(line 6). A k-opt heuristic checks all k′ neighbourhoods be-
fore termination. Here, 1 ≤ k′ ≤ k. It can be observed

Optimising Efficiency in Part-Load Transportation

51

Algorithm 1 tour improvement
1: procedure IMPROVE(s, k) . initial solution, max

neighbourhood size
2: while true do
3: d← dimensionOfSearchSpace(s)
4: pick route1 from d
5: pick route2 from d
6: for k′ ← 1, k do
7: o← neighbourhood(route1, route2, k′)
8: for all o′ ∈ o do
9: s′ ← getNeighbour(o′)

10: if f(s′) < f(sbest) then
11: sbest ← s′

12: end if
13: end for
14: if stop-criterion met then
15: return sbest
16: end if
17: s← sbest
18: if improvement then
19: break . repeat with k = 1
20: end if
21: end for
22: end while
23: end procedure

that the k-opt may take exponential number of iterations to
evaluate all possible k′-changes. The performance is hence
sensitive to the number of orders on a route.

A similar k-opt algorithm for the TSP was studied for the-
oretical performance guarantee and results have been shown
for the proof of quality of the 2-opt as a heuristic for random
TSP instances in unit square [Chandra et al., 1994]. The ad-
vantage of the k-opt heuristic is its scalability in the choice of
the neighbourhood size. We show the results obtained from
using the 2-opt as the tour improvement heuristic. Though k
can take any integer value less than | Oi | for that route ri in-
volved in the change, we applied k = 2. The restriction was
not just to simplify implementation, but to see the first results
of performance of the 2-opt algorithm on real world data for
the m-PDPSTW, on an inexpensive hardware. The results are
discussed in the following Section.

4 Results

The heuristics described in the previous section were evalu-
ated on real world data of an international carrier. The avail-
ability of the human delivery plan allows us to compare the
performance of the heuristics and demonstrate their applica-
bility on real world problems. However, to have an idea on the
gap of the used heuristics to optimal solutions, we ran them
on the biggest available benchmark problems listed in [Lim,
2010]. In the following we start with a discussion of the
benchmark problem data sets and the differences to real world
scenarios, before we characterize the specific real world data
set followed by a comparison of our results to the human de-
livery plan.

4.1 Benchmarks
In order to run benchmark problems, a couple of changes to
the system are necessary. The expensive calculation of legal
drive time regulations could be switched off. In general the
drive time/distance lookup is much cheaper in the benchmark
case just calculating Euclidean distances instead of looking
up real road drive times. To avoid too heavy changes on the
system, distance and drive time calculation is done using in-
tegers (rounded, not truncated) which is precise enough in
real world. This is why the results marked with a * in Table 2
can not be counted as best known. Considering soft time win-
dows could be switched off making time windows shorter and
easier to prune. Having all trucks available in one depot and
having identical trucks simplifies the decision on which truck
to take. However some pruning is then not possible like not
assigning orders to trucks that are too heavy or too big.

Given this, the comparison to benchmarks can only be an
indicator. This is why we only added one instance for each
of the six classes available in [Lim, 2010]. Anyhow, the main
focus here is on optimizing real world data. As can be seen,
the optimization approach is highly sensitive to the amount
of orders on a single route as has been stated in Section 3.2.
The corresponding amount of orders per truck is 3.1 in the
optimized real world scenario.

4.2 Characterization of the real world data set
The real world problem data set consists of overall 1736 vehi-
cle definitions starting at 248 different locations, and 2137 or-
ders with pickup and delivery locations in six different coun-
tries across Europe. The orders define overall 921 different
locations. Since this statistic is not taking the corresponding
time windows into account, we decided to provide a more ac-
curate statistic by combining a location with its correspond-
ing date, to a so called location-date. The combination of all
pickup locations with their earliest pickup date and respec-
tively all delivery locations with their earliest delivery date
results in 2113 different location-dates. Real world data also
includes missing and/or implausible values, which have to be
handled by the system. For this reason, carrier specific pro-
cessing rules are used to clarify such situations most likely to
what a human dispatcher would do.

To get a general impression of the specific data set, the av-
erage and standard deviation to all significant attributes are
listed in Table 3. While the pickup time windows are often
defined more precise, most delivery time windows are either
missing one limit in data, or sometimes both, which leads to
a high average (towards the default value of one week) with
a relatively small standard deviation compared to the pickup
time windows. It also seems hard to find a good indicator
for reasonable pruning of the search space. According to the
average and standard deviation of the capacity demand of the
orders (loading meters and weight), in relation to the capacity
of the available vehicles, around 95% of the orders could be
served by any arbitrary vehicle. In fact 253 orders (11.8%)
have a bigger capacity demand than the smallest available ve-
hicle. But since the smallest vehicles contribute by just 0.12%
to the total vehicle fleet, this theoretical potential gets again
negligible. The orders cover a 20 day period (from the earliest
earliest-pickup to the latest latest-delivery).

Srinivasa Ragavan Devanatthan, Stefan Glaser, Klaus Dorer

52

Instance vehicles distance orders avg. orders per time (s)
own best off own best off vehicle (best)

lc1101 100 100 0% 42 460 42 488.66 -0.1%* 527 5.27 65
lr1101 95 100 -5%* 70 242 56 903.88 +19% 527 5.27 95
lrc1101 104 84 +24% 62 887 49 315.30 +27% 527 6.27 170
lc2101 39 30 +30% 34 282 16 879.24 +103% 507 16.8 589
lr2101 30 19 +58% 89 454 45 422.58 +97% 503 26.5 1 021
lrc2101 43 22 +95% 66 943 35 073.70 +91% 507 23.0 717

Table 2: Application to benchmark instances

Orders avg stddev
Distance (km) 666.52 334.45
Loading meters 5.65 5.45
Weight (kg) 7 428.26 8 196.43
Pickup time window (h) 102.30 81.70
Delivery time window (h) 155.35 43.46
Service time (min) 90.00 0.00
Vehicles
Loading meters 14.93 0.26
Weight (kg) 26 850.81 537.67

Table 3: Analysis of the real world data set

4.3 Optimization results

The availability of the human dispatcher’s delivery plan al-
lows a validation with respect to real world scenario. Table 4
shows the result statistics for insertion heuristic and tour im-
provement heuristic with respect to the human delivery plan.
While the insertion heuristic itself is just applicable on start
up to build an initial solution, the tour improvement heuris-
tic can be applied upon both plans. As mentioned before,
the objective function during optimisation was the total cost
(transportation and constraint costs). In a real world scenario,
apart from the total cost, other parameters like the average
utilisation of the vehicles, the overall driving km, the empty
km and the number of time window violations are addition-
ally used to measure the quality of a delivery plan. In Table 4
the average utilisation of a vehicle was calculated as capacity
utilisation per driven km. All results were computed single
threaded on an ordinary PC (Intel Core 2 Duo @ 2.8 GHz).
Runtime measurements correspond to this hardware.

The insertion heuristics was able to save more than 25%
of the costs compared to the plan created by human dispatch-
ers. In more detail, since the transportation costs are directly
related to the load of a vehicle together with the driven dis-
tance, most of the cost savings have to be reached by a higher
utilisation. In this case, the insertion heuristic was able to rise
the average utilisation from initially 45.1% up to 76.2%. In
terms of costs of the matrix cost model we used, this results
in a cost difference around 25% to 30% - depending on the
driving distance. This and the reduction of overall kilome-
tres are the most significant cost reduction factors. The main
reason why human dispatchers fail to achieve the same result
quality is most likely that not all orders are visible to them.

Typically dispatchers are organised in regional business cen-
tres and have limited insight into orders of other regions to
keep the assignment problem tractable to humans.

The relatively low number of violations in the human plan
was reduced by another 50%. The reduction in number of
used vehicles is due to the higher utilisation as well as using
the same vehicles more often. A runtime of 18 minutes is
definitely acceptable to logistic companies.

The tour improvement heuristics was applied to the human
delivery plan, in order to see its potential upon a hand made
solution. As shown in Table 4 it was able to improve in all of
the previously listed comparison criteria.

The best results are achieved by running tour improvement
heuristics on the solution created with insertion heuristics
saving 26.9% of the costs. Three hours of runtime could be
problematic in dynamic situations, but the heuristics is incre-
mental and can be interrupted at any time.

5 Conclusions and Future Work
We were able to show, that our heuristics are able to deal with
the instance size and complexity of a real world m-PDPSTW.
The reported results indicate that the insertion heuristic is ef-
ficient in building initial solutions compared to the delivery
plan created by human dispatchers. It can be observed that
the sequential application of both heuristics significantly re-
duce the overall transportation cost.

It is our strong believe that it is of big value to compare
optimization results with human performance. It boils down
to the question if optimization should address theoretically
uninteresting but practically important issues like drive time
regulations or real street distances. Only by doing so, we
will practically benefit from work done in this area. In the
absence of exact methods to solve such instance sizes, the
first ones able to solve these problem instances to compare
with are human dispatchers.

The results presented in this paper are non-dynamic, i.e.
they do not take the time into account at which the data was
available to the system (see [Azi et al., 2010]). The opti-
mization algorithms used, however, can easily be adjusted to
deal with dynamic versions of the problem. The time calcu-
lation has to be adjusted to take the current time into account.
Nodes already in the past are skipped during calculation. Or-
ders have to be inserted by the date they are known to the
system. The insertion heuristics works unchanged and pro-
duces 985,756 cost on the data presented in Section 4 which
is 1.8% off the non-dynamic result and still more than 20%

Optimising Efficiency in Part-Load Transportation

53

Human plan Insertion heuristic Impr. heuristic on Human Impr. heuristic on Insertion
Transportation Cost 1 300 233 968 658 (-25.5%) 1 030 162 (-20.8%) 950 916 (-26.9%)
Driving km 1 246 771 885 063 (-29.0%) 951 390 (-23.7%) 873 027 (-30.0%)
Empty km 26 338 9 435 (-64.2%) 5 545 (-79.0%) 8 579 (-67.4%)

Utilisation (%) 45.1 76.2 61.2 76.1
Violations 47 23 (-51.1%) 7 (-85.1%) 19 (-60.0%)

Vehicles 1 736 699 (-59.7%) 1 111 (-36.0%) 697 (-59.9%)
Transported Orders 2 137 2 137 2 137 2 137

Runtime(min) - 18 180 180

Table 4: Comparison of human and optimised delivery plans

better than the human dispatchers. We are currently work-
ing on changing the high level workflows to include tour im-
provement heuristics. The main changes affect when tour im-
provement heuristics are triggered and what routes to select.

Currently we assume that every order is transported only
on one route serviced by only one vehicle. In reality, an order
on a certain vehicle might be exchanged with another vehi-
cle while in transit. The mode of transport could also differ.
In such cases, for example, it would be cheaper to transport
large number of orders by rail than individually transporting
them by road. The orders in the example would have to be
checked for partial transport on adjacent routes. We refer to
the problem as “inter-modal heterogeneous m-PDPSTW”. It
can be observed that the already large combinatorial space
enlarges further. The analysis of performance and behaviour
of known methods would allow us to understand the problem
space better and improve our techniques.

References
[Azi et al., 2010] Nabila Azi, Michel Gendreau, and Jean-

Yves Potvin. A dynamic vehicle routing problem with
multiple delivery routes. CIRRELT-2010-44, (44), 2010.

[Chandra et al., 1994] Barun Chandra, Howard karloff, and
Craig Tovey. New results on the old k-opt algorithm for the
tsp. 5th ACM-SIAM Symposium on Discrete Algorithms,
pages 150–159, 1994.

[Dorer and Calisti, 2005] K. Dorer and M. Calisti. An
adaptive solution to dynamic transport optimization. In
Michael Pechoucek, Donald Steiner, and Simon Thomp-
son, editors, AAMAS 2005 proceedings, Utrecht, 2005.

[Dumas et al., 1991] Y. Dumas, J. Desrosiers, and F. Soum-
nis. The pickup and delivery problem with time win-
dows. European Journal of Operational Research, 54:7–
22, 1991.

[Helsgaun, 2006] Keld Helsgaun. An effective implemen-
tation of k-opt moves for the lin-kernighan tsp heuristic.
Writings on Computer Science, (109), 2006.

[Jaw et al., 1983] J. Jaw, A. Odoni, H. Psaraftis, and N. Wil-
son. A heuristic algorithm for the multi-vehicle advance
request dial-a-ride problem with time windows. Trans-
portation Research B, 20B(3):243–257, 1983.

[Laporte and Osman, 1995] G. Laporte and I. H. Osman.
Routing problems: A bibliography. Annals of Operations
Research, 61:227–262, 1995.

[Lawler et al., 1985] E. L. Lawler, J. K. Lenstra, A. H.
G. Rinnooy Kan, and D. B. Shmoys. The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimiza-
tion. Wiley, New York, 1985.

[Lim, 2010] Li & Lim. Li & lim benchmark. Website,
2010. http://www.sintef.no/Projectweb/
TOP/Problems/PDPTW/Li--Lim-benchmark/.

[Nanry and Barnes, 2000] William P. Nanry and J. Wesley
Barnes. Solving the pickup and delivery problem with
time windows using reactive tabu search. Transportation
Research, Part B 34:107–121, 2000.

[Papadimitriou and Steiglitz, 1982] C. H. Papadimitriou and
K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

[Parragh et al., 2008a] Sophie N. Parragh, Karl F. Doerner,
and Richard F. Hartl. A survey on pickup and delivery
problems: Part i: Transportation between customers and
depot. Journal für Betriebswirtschaft, 58(1):21–51, 2008.

[Parragh et al., 2008b] Sophie N. Parragh, Karl F. Doerner,
and Richard F. Hartl. A survey on pickup and delivery
problems: Part ii: Transportation between pickup and de-
livery locations. Journal für Betriebswirtschaft, 58(2):81–
117, 2008.

[Psaraftis, 1995] H. Psaraftis. Dynamic vehicle routing:
status and prospects. Annals of Operations Research,
61:143–164, 1995.

[Ropke et al., 2007] Stefan Ropke, Jean-Francois Cordeau,
and Gilbert Laporte. Models and branch-and-cut algo-
rithms for pickup and delivery problems with time win-
dows. Networks, 49(4):258–272, 2007.

[Savelsbergh and Solomon, 1998] MWP. Savelsbergh and
M. Solomon. Drive: Dynamic routing of independent ve-
hicles. Operations Research, 46:474–490, 1998.

[Solomon, 2005] M. Solomon. Vrptw benchmark prob-
lems. Website, 2005. http://w.cba.neu.edu/
˜msolomon/problems.htm.

Srinivasa Ragavan Devanatthan, Stefan Glaser, Klaus Dorer

54

Workflow Resource Allocation through Auctions

Albert Pla1, Beatriz López1 and Javier Murillo2

1University of Girona, Girona, Spain
{albert.pla,beatriz.lopez}@udg.edu

2Newronia, Girona, Spain
javier.murillo@newronia.com

Abstract
Nowadays business processes of the manufacturing
industries are becoming more complex delocalizing
its production plants and outsourcing more parts of
their production processes. This involves a lot of
uncertainty, making the production planning, con-
trol and resource allocation complex. To deal with
that issue, we propose a methodology for allocat-
ing resources into distributed manufacturing envi-
ronments using a multi agent workflow manage-
ment system and reverse sealed bid auctions. In this
paper two different auctioning strategies are pre-
sented, one for reducing economic costs and one
for reducing production time. In order to test our
approach we simulated different situations using
different kinds of workflows and resources, getting
promising results both in economic and time terms.

1 Introduction
The economy globalization is driving many manufacturing
industries towards the decentralization of their production
processes. This means not only to distribute the production
into different factories and production plants but also to out-
source some steps of the chain production, increasing the
complexity of the supervision and the planification of the pro-
duction processes.

The production chain is no longer able to be controlled
by a single entity. The status of the production resources
(e.g. technicians, transports, services, etc.) is unknown as
they can be managed by different departments inside the or-
ganization or even by outsourcing companies which are in
charge of dealing with a certain part of the business process.
Moreover, the intervention of third party elements also diffi-
cults the cost optimization creating a confrontation between
the manufacturers, which try to obtain the lowest price and
the higher quality in the market, and the outsourcing compa-
nies which tries to maximize its benefits and its occupation.
Each outsourcing company has it’s own schedule with cus-
tomers which cannot be seen by others due to privacy issues.
An example of this situation is a medical device maintenance
service of an hospital. In a medical environment, medical
devices need different maintenance operations such as revi-
sions, reparations, reconfigurations, etc. Some of them can be

scheduled in advance, nevertheless others such as fault repa-
rations or contingencies cannot be planned thus affecting the
normal development of the hospital. This tasks must be car-
ried out by qualified technicians which can be part of the hos-
pital staff itself but some times outsourcing technicians are
required.

Production methodologies such as Lean Manufacturing
[Shah and Ward, 2003], which are strongly customer-
oriented, postulate that production must strictly satisfy cus-
tomer demand and specifications to avoid creating any un-
necessary values and without resorting to unnecessary work.
This approach encourages the interaction between the man-
ufacturer and the customer and it also empowers the cus-
tomization of the final product. Thus, the flexibility in the
production chain allows the producer to introduce modifica-
tions into the original design without affecting other tasks.
The Lean philosophy can be used in embedding processes
where the customer can personalize its order, assembling
only the required pieces and without having pre-assembled
stock, saving storage space and reducing the number of waste
stocks. To meet these requirements, production can be real-
ized under demand: allocating resources on real time with-
out taking into account possible future processes which could
never be started. From the scheduling point of view, this
means that the planing for a business process is not planned
until it is demanded and that the business process do not al-
locate a resource until the task which requires the resource is
about to start.

The main characteristics of these new manufacturing sce-
narios are dynamism, decentralization, collaboration with
outsourcing third partys, contingency robustness and cus-
tomer orientation. Therefore a lot of uncertainty is involved,
making the production planing and control complex. Our
work concerns the research for new tools that support man-
agers in these environment. We propose a methodology for
allocating resources into distributed manufacturing environ-
ments based on compounding workflows with multi agent
system (MAS) and auctions for resource allocation being re-
source used from a wide scope: a technician intern to a com-
pany, a service provided by third party company, etc.

On the one hand, MAS provide an infrastructure in which
different companies can be coordinated to deploy an activity
while maintaining their schedule and customers appointments
in privacy. On the other hand, auctions offer companies the

55

Figure 1: Schema of the system architecture: each workflow type is monitored by a Workflow Agent while each resource is
represented by a Resource Agent.

chance to compete for providing a resource or service to a
manufacturer without revealing private information [Cheva-
leyre et al., 2006]. Thus, workflows are handled by agents
which, in turn, use auctions for negotiating for the resources
they need to accomplish their activities.

The use of auctions for resource allocation benefits the
manufacturer not only decreasing the outsourcing prices, but
also increasing the occupation of its own resources. On the
one hand, workflows will be able to minimize the cost of the
resource by comparing the different bids offered by the avail-
able resources and they will be also able to decide which re-
sources are more suitable to fit in their timing compromises
without the need of accessing to their agendas. On the other
hand, when internal resources receive incentives for they use,
auctions balance its workload as resources tend to maximize
its occupation.

2 Background
To manage the evolution and the interactions of the business
processes it is important to accurately model the steps to fol-
low in the activity, the resources needed and the flow of infor-
mation between the different parts involved (suppliers, manu-
facturers, clients, etc.). Workflows provide a way of describ-
ing the order of execution and the dependent relationships
between the constituting activities of the business processes
[Tick, 2002]. Workflows usually model single and unique
business processes, nevertheless, in real life environments,
workflows are rarely executed individually. Workflows usu-
ally run concurrently, sharing a limited number of resources
which some times are provided by third party companies.

A workflow consists in a graph of interconnected actions
which represents the tasks and interactions to be realized by
a mechanism, a person, a staff, an organization, etc. Work-
flows can model business process, exchange of messages and
software procedures or information.

A workflow instance is a workflow which is being exe-
cuted in a concrete time instant. For example, a workflow
can model the business process required to do maintenance
in a medical equipment; then, when a medical device re-

quires a maintenance operation, a workflow instance is cre-
ated. When several workflows are coexisting in a common
framework (e.g. an organization, an industry, a server, etc.)
where they share resources, actors or information they are
called a workflow environment. Workflows can be controlled
and monitored by a workflow management system (WMS).

WMS manages and monitors the different tasks which take
place inside an organization or a workflow environment. It
is responsible for monitoring the status of the different work-
flows and to store in a log the different events related to the
workflow deployment. WMS can also be responsible of the
assignment of resources to workflows and their schedules.

3 Related Work
There are several previous works related to the application of
agents to workflow management systems to support coopera-
tion activities. For example, [Juan et al., 2009] uses agents to
facilitate the collaboration of multi-disciplinary workgroups
in a company for design products following a concurrent new
product development strategy They start with predefined re-
quirements of cooperation, and the multi-agent approach is
used to achieve such requirements. Conflicts can arise when
there are different points of views on cooperative tasks, and
they are solved by specific cooperation diagrams. Our pro-
posal includes different ways of conflict resolution, by means
of auctions. In [Guo et al., 2008] a decentralized multi-agent
architecture is proposed workflows. Particularly, the authors
face the problem of interoperability between heterogeneous
agents and they propose the use of business modeling lan-
guages as BPEL4WS [Wohed et al., 2003]. In our case, we
are assuming that agents are able to understand each other;
so this assumption can be leveraged with the complementary
approach offered in [Guo et al., 2008].

A founder work in this field is [Jennings et al., 2000], in
which the authors explore the use of agents to enact coop-
eration at the business level thanks to the advent of Internet.
In this case, workflows are not fixed, but agents represents
collections of services that can be combined (by agents ne-
gotiation) to compound business process. This approach is a

Albert Pla, Beatriz López, Javier Murillo

56

radical one, since it requires from a novel point of view of
current business. Our approach is a step forward to achieve
such a revolution, but by following an evolutionary approach.
So we are starting from the current tools that are in the indus-
try (workflows) and provide a way to make them more flexi-
ble thanks to agents. This less-drastically approach could be
more useful to non-Internet based business models.

Other approaches regarding workflows and agents can be
found in the recent published survey [Delias et al., 2011].
Our approach differs from the previous ones in the way re-
source conflicts are being handled, taking into account penal-
ties. Moreover, we respect current WMS while proposing an
extension that takes advantage of current advances on agents,
which improves monitoring capabilities of WMS (reducing,
for example, delays).

4 Auction-based workflow resource allocation
We propose to handle both workflows and resources within
a multiagent WMS which monitors and organizes the course
of the manufacturing process. For that purpose two differ-
ent kind of agents are used: the workflow agents (WA), one
per workflow, and the resource agents (RA), one per exist-
ing resource. As Figure 1 shows, WA supervises the work-
flow it represents and when a resource is needed it summons
a reverse sealed bid auction [Amelinckx et al., 2008] indicat-
ing the desired conditions (minimum starting time, maximum
ending time, resource type, etc.) and a penalty to pay if a con-
tract is broken, becoming, thus, an auctioneer. Then, resource
agents evaluate their agendas and decide to participate or not
to the auction depending on the auction conditions and the
possibilities the resource have to finish the task on time.

Auctions have three main elements:

• Winning Determination Problem (WDP), handled by
the auctioneer (WA).

• Bidding Policies, which are the bidding strategies fol-
lowed by the bidders (RA).

• Pricing Mechanism, which defines the payment meth-
ods between agents.

In our approach we follow a reverse sealed bid auction, mean-
ing that the role between the auctioneers and the bidders is re-
versed as the auctioneer is the one who wants to buy a good,
not to sell it. While ordinary auctions provide suppliers a
chance to find the best buyers, reverse auctions give buyers an
opportunity to find the lowest-price supplier and improving
the chances of improving a fair market value. To encourage
the resources to bid according to the market value, bidders
submit its proposals simultaneously, without knowing other
participants bids and the one with a lowest value becomes the
winner. To prevent fraudulent bids, agreement repudiation or
delays into the ending time agreement, auctions are endowed
with a penalty mechanism that allows the agent to fine the re-
sources which do not accomplish the established agreements.

4.1 Workflow Agents: The Auctioneers
Workflow agents are the ones responsible for monitoring run-
ning workflows and for obtaining the necessary resources to

Figure 2: Example of a resource action. If the WDP consid-
ers the lowest price as the winning policy, Resource Agent
2 would be the winner, otherwise, if time is considered, Re-
source Agent 1 would be the winning resource

finish them in the required time. Each WA monitors just one
workflow, which is modeled using high level Petri nets (PN).
Each time a workflow should be started, a token is add to the
start node of the PN. For example, a workflow can model the
repair process of a medical device. Thus, each time a medical
device needs to be repaired, a token is added to the workflow,
meaning the instantiation of the workflow.

Workflow modeling using high level Petri nets has been
broadly studied [Alt et al., 2006]. As our work is specially
focused on resources, we need to take care of the kind and
number of resources needed for every task inside the work-
flow. In order to satisfy this requirement we extended the
Petri Net representation with a new resource element [Pla
et al., 2011]. We called this extension resource-aware Petri
nets (RAPN). RAPN incorporate resources to high level Petri
nets. Resources are related with sets of consecutive transi-
tions where the first transition is the one which allocates the
resource and the last is the one which releases it. If there are
not available resources of the required type by a transition this
transition cannot be fired until a resource of the desired type
can be used.

When a resource is needed in a workflow activity, the WA
must obtain a suitable resource to satisfy the agent require-
ments. By suitability we mean that activities have not a spe-
cific resource assigned to them (e.g. technician 1) but features
of the resource (e.g. a technician with a specific license). In
the call, the auctioneer specifies the different attributes to be
fulfilled by the resource willing to deploy the task (e.g. min-
imum resource license, starting time and ending time.). Ac-
cording to the interests of the workflow agent the determi-
nation of the auction winner can be solved in two different
ways:

• Balanced Strategy: The winner of the auction is the bid
which offers the lowest price (in Figure 2 winner agent
would be Resource Agent2). This strategy decreases the
costs for the workflow agent while promotes a balanced
market price as bidders tend to offer reasonable prices in

Workflow Resource Allocation through Auctions

57

order to avoid the loss of customers. The balanced strat-
egy is suitable for dealing with outsourcing resources as
it can obtain fair prices. However, it is also useful when
dealing with inside company resources as when an equi-
librium market price is reached since bidders try to max-
imize its benefits by increasing its occupation arising the
productivity of the local company resources.

• Delay Prevention Strategy: This strategy favors the
shortening of the workflow timings and in a reduction of
delays by setting the auction winner taking into account
the ending time (in Figure 2 winner agent would be Re-
source Agent1). By setting as winner the bid with an
earliest ending time, the ending time for the workflows
will be shortened but the economic cost will be higher
than the one obtained in the balanced strategy. This fact
makes this strategy specially indicated for dealing with
the own company resources where costs are not the hard-
est constraint.

As seen in Figure2, the policy adopted in the WDP will
change the system behavior and benefits.

4.2 Resource Agents: The Bidders
The interests of the resources are also defended by agents.
Each resource is represented by RA which is defined by its
category (the set of tasks feasible by the resource), the sched-
ule of tasks (agenda), an estimation of the time needed to
achieve certain procedures and its time constraints. The main
goal of each agent is to maximize its benefit and, in conse-
quence, to maximize and to capitalize its occupation.

Resources are free to decide whether to participate in an
auction or not and to set the bid they consider convenient,
however the bidding strategies they choice must be in con-
cordance with their aims. RAs must bid taking into account
their agenda, the benefits that behave their schedules and the
penalties that accomplishing their timetables. These facts
will define the character of the RA. For example an agent
could decide to cancel one of its planned activities if the ben-
efits of accepting another task and paying the correspond-
ing penalty overcomes the profits generated by the scheduled
task. Agents can also offer risky bids, using its experience
they can analyze the probability of ending a task on time; as
RA are charged with penalties when they do not end tasks on
time, they can assume the risk arising the bid price according
to this probability in order to amend the fine in case of delay.
As a first approach we have defined bidders capable to adapt
their prices to the market, increasing its prices when the de-
mand is high and decreasing them when demand is lower[Lee
and Szymanski, 2005]. Fines evaluation will be included in a
future work.

5 Experimentation
In this section the previously presented methodology is tested
to evaluate the Multi-agent WMS performance and benefits
when using different auctioning strategies. Using the work-
flow simulation engine presented in [Pla et al., 2011] a work-
flow environment with common resources have been simu-
lated. The experiments are evaluated in terms of economic

Figure 3: Mean Workflow agents’ budget in Scenario1

cost (agent benefits and costs), workload balancing and de-
lays in the process execution.

5.1 Experimental Set Up
To test the performance of our system we modeled and simu-
lated a set of three synthetic workflows. Each of these work-
flows is composed by four different tasks which have a du-
ration compressed between 10 an 15 time units and needs a
resource of a randomly assigned category (between A and F).
In consequence, each workflow has a duration between 40
and 60 time units and requires between 1 and 4 different re-
sources. In the simulation, the number of tasks that will be
executed is unknown as it simulates and organization where
workflows are not scheduled, they arrive under demand.

The two previously defined auctioning strategies, Balanced
Strategy and Delay Prevention Strategy, have been evaluated.
Besides the auction resource allocation methodology, a sim-
pler scheduling method have been used in order to compare
the two methodologies. For that purpose a First In First Out
resource queue have been used. Every time a workflow needs
a resource of a concrete type, it checks a list of the system re-
sources and uses the first available. In cases of two workflows
requiring the same resource, according to the FIFO strategy,
the first workflow to ask for the resource would be the first
one to be served.

To evaluate our methodology two different scenarios have
been tested:

Scenario1: This scenario simulates a workflow environ-
ment with four different resources during 200 time units and
with a probability p of starting a new workflow p = 0.2. Each
resource can perform tasks of three different categories (RA1:
A-B-C. RA2:A-B-D. RA3:C-E-F. RA4:D-E-F). This experi-
ments shows the behavior of the methodology in a common
situation: the number of resources is lower than the number
of workflows that requires them.

Scenario2: This scenario repeats the previous experiment
but with a significant difference, this turn, each resource can
perform any type of task (A-F), increasing competency be-
tween resources. This scenario lasts 200 time units and with

Albert Pla, Beatriz López, Javier Murillo

58

a probability p of starting a new workflow p = 0.2. The aim
of this experiment is to evaluate the behavior of the system
when there is a high competitivity between similar agents and
how the workload is distributed.

Both scenarios have been repeated 20 times for each auc-
tioning strategy and for the FIFO resource queue in order to
obtain significant results.

5.2 Results
The results of the different experiments are shown in Tables 1
and 2. In them, information about economic costs and delays
produced are given. As each experiment has been repeated
several times, the results are expressed in terms of mean and
coefficient of variation. Some graphical examples are also
presented.

Table 1 presents the results of the first scenario. Regard-
ing delays, as it was expected, it can be seen that, while the
Balanced Strategy (BS) and the FIFO resource queue (FRQ)
produce a similar number of delays (5,6 and 6,4 in average
respectively), using the Delay Prevention Strategy (DPS) sig-
nificantly reduces the number of delays (2,2). Second, from
the economic point of view, Figure 3 shows how the use of
the BS reduces the money spent by WAs and, as a conse-
quence, the average earns by RAs also decreases.This figure
also shows that the DPS also reduces the costs respect the
FRQ. Another interesting fact which can be observed in Ta-
ble 1 is that using the BS the variance of the resources benefits
is up to 4 times lower than in the other two strategies, indi-
cating that the resource agents have offered similar prices,
reaching a more balanced price market.

In Table 2 we can observe how the results of the second
experiment are similar to the previous one: DPS reduces the
number of delays during workflow executions while the use
of agents reduces the costs for the workflows. A relevant
point in this experiment is the variation coefficient of the re-
source agents’ incomes. We can see how the use of auctions
(specially using a BS) decreases the resource prices and re-
duces the variability of these costs respect a FRQ. In this
sense it is important to notice that when all the resources of
an environment have the same properties, the BS tends to ho-
mogenize the cost of the resources: the coefficient of vari-
ation of resource benefits is 6, 67% against the 18, 33% of
the DPS and the 33, 96% of the FRQ. Comparing this coeffi-
cient with the one obtained in the first scenario (where all the
resources had different capabilities) by the BS 10, 74% we
can corrobarate how the more similar the resources are the
more balanced the price market becomes. Finally, Figure 4
illustrates how the workload of the agents have been also bal-
anced conversely the FRQ. The plot shows gaps in the RA
occupation and how in the FRQ resources are not starting to
work until previous resources in the resource list are occupied
while using BS the occupation of the resource is rather more
balanced.

The performed experiments have shown how the BS de-
creases the costs for the WAs and how equilibrates the ben-
efits between similar RAs. Moreover, BS can balance the
workload between agents when they have similar capabilities.
Regarding DPS, we observed that it significantly reduces the

Table 1: Results of a common situation in therms of resource
availability.

BS DPS FRQ
Delayed Workflows 5,60 2,20 6,40
WF1 Spent Money 15846,00 16308,00 20758,00
WF2 Spent Money 17806,20 20723,40 19814,00
WF3 Spent Money 19280,60 22146,00 22028,00
Total Spent Money 52932,80 59177,40 62600,00
Mean Spent Money 17644,26 19725,80 20866,67
Std Dev 1723,02 3044,17 1111,00
Coef. Variation (%) 9,76 15,43 5,32
Resource1 Earned $ 15068,80 18005,60 16880,00
Resource2 Earned $ 12228,80 21692,40 19800,00
Resource3 Earned $ 11997,60 10148,20 11616,00
Resource4 Earned $ 13637,60 9331,20 14304,00
Total Earned Money 52932,80 59177,40 62600,00
Mean Earned Money 13233,20 14794,35 15650,00
Std Dev 1422,26 6036,77 3503,34
Coef. Variation (%) 10,74 40,80 22,38

Table 2: Results of a scenario where all the agents are com-
peting to provide the same resource typology.

BS DPS FRQ
Delayed Workflows 5,80 2,60 8,20
WF1 Spent Money 16003,40 18229,00 23907,40
WF2 Spent Money 19602,60 20695,80 24046,80
WF3 Spent Money 22417,20 23751,00 25802,60
Total Spent Money 58023,20 62675,80 73756,80
Mean Spent Money 19341,07 20891,93 24585,60
Std Dev 3214,89 2766,22 1056,26
Coef. Variation (%) 16,62 13,24 4,29
Resource1 Earned $ 13238,00 13897,80 23240,20
Resource2 Earned $ 14859,20 18832,20 24408,00
Resource3 Earned $ 14668,40 12665,40 12354,60
Resource4 Earned $ 15257,60 17280,40 13754,00
Total Earned Money 58023,20 62675,80 73756,80
Mean Earned Money 14505,80 15668,95 18439,20
Std Dev 880,12 2872,93 6262,31
Coef. Variation (%) 6,67 18,33 33,96

number of delays respect FRQ and it also reduces the eco-
nomical costs, although not as much as BS.

6 Conclusions and Further work
This paper concerns an important problem for the manufac-
turing industry: how to allocate internal and foreign resources
or services in a decentralized production processes while
maintaining customers appointments and providers schedules
in privacy. Our work is also related with flexibility issues in
the production chain as provides mechanisms for managing
customer-oriented production methodologies such as Lean
Manufacturing. We proposed a methodology which com-
bines workflows with MAS and auctions. On one side MAS
offers a framework where companies can coordinate and de-
ploy their activities without jeopardizing privacy or flexibil-
ity. On the other side, auctions can be useful for resource
allocating in different senses: minimizing costs of external

Workflow Resource Allocation through Auctions

59

Figure 4: Resource occupation on Scenario2. Left: Occupation using BS. Right: Occupation using FRQ

services, reducing timings and balancing the occupation of
internal resources.

Our approach presents a workflow management system
which handles both workflows and resources using two kind
of agents: workflow agents and resource agents. Resource
allocation is carried out using auctions: each time a WA re-
quires a resource, it calls a reverse sealed auction with its de-
sired conditions while RA compete to win the auction. Two
different strategies for the auctioneer agent have been pre-
sented: Balanced Strategy and Delay Prevention Strategy.
The first one is focused on the resource costs and it is suit-
able for decreasing the resource prices (when dealing with
outsourcing resource) and to equilibrate the workload balance
(when allocating internal resources). The second one is cen-
tered on the time needed to finish a task and its purpose is to
reduce the number of delayed workflows during the execution
of several concurrent business processes.

To test the performance of our approach we simulated dif-
ferent synthetic workflows with different resource availability
conditions. The workflows have been managed using a mul-
tiagent workflow management system endowed with the two
presented auctioning strategies. The results show how the two
presented auctioning strategies result in economic cost reduc-
tion, balanced market price, workload balancing and delay re-
duction, showing that BS is indicated for improving the three
first mentioned measures while DPS enhances the last one.
These results encourage to develop a new strategy which bal-
ances the 4 measures, finding a compromise between BS and
DPS.

As a future work we plan to include fine evaluation to bid-
der agents. Moreover we want to elaborate new auctioning
strategies and to consider including multi-attributive auctions.
Another step would be to improve certain MAS capabilities
of the system such as trust or reliability on the resources based
on historical information, which will help us dealing with
cheating bidder agents.

Acknowledgements
This research project has been partially funded through the
project labeled TIN2008-04547 and BR10/18 Scholarship of
the University of Girona granted to Albert Pla.

References
[Alt et al., 2006] M. Alt, S. Gorlatch, A. Hoheisel, and H.W.

Pohl. Using high-level petri nets for hierarchical grid
workflows. In E-SCIENCE ’06: Proceedings of the Sec-
ond IEEE International Conference on e-Science and Grid

Computing, page 13, Washington, DC, USA, 2006. IEEE
Computer Society.

[Amelinckx et al., 2008] I. Amelinckx, S. Muylle, and
A. Lievens. Extending electronic sourcing theory: An
exploratory study of electronic reverse auction outcomes.
E.C.R.A., 7:119–133, 2008.

[Chevaleyre et al., 2006] Y. Chevaleyre, P.E. Dunne, U. En-
driss, J. Lang, M. Lematre, N. Maudet, J. Padget,
S. Phelps, J.A. Rodrguez-aguilar, and P. Sousa. Issues
in multiagent resource allocation. Informatica, 30:2006,
2006.

[Delias et al., 2011] P. Delias, A. Doulamis, and N. Matsatsi-
nis. What agents can do in workflow management systems.
A.I.R., 35:155–189, 2011.

[Guo et al., 2008] L. Guo, D. Robertson, and Y. Chen-
Burger. Using multi-agent platform for pure decentralised
business workflows. Web Intelli. and Agent Sys., 6:295–
311, August 2008.

[Jennings et al., 2000] N. R. Jennings, T. J. Norman,
P. Faratin, and B. Odgers. Autonomous agents for busi-
ness process management. Journal of Applied Artificial
Intelligence, 14:145–189, 2000.

[Juan et al., 2009] Y.C. Juan, C. Ou-Yang, and J.S. Lin.
A process-oriented multi-agent system development ap-
proach to support the cooperation-activities of concurrent
new product development. Comput. Ind. Eng., 57:1363–
1376, November 2009.

[Lee and Szymanski, 2005] J. Lee and B.K. Szymanski. A
novel auction mechanism for selling time-sensitive e-
services. In IEEE Conference on ECommerce Technology
(CEC’05, pages 75–82. Press, 2005.

[Pla et al., 2011] A. Pla, B. Lopez, J. Melendez, and P. Gay.
Petri net based agents for coordinating resources in a
workflow management system. In ICAART, pages 514–
523, Rome, Italy, February 2011.

[Shah and Ward, 2003] R. Shah and P.T. Ward. Lean manu-
facturing: context, practice bundles, and performance. op.
Management, 21(2):129–149, 2003.

[Tick, 2002] J. Tick. Workflow model representation con-
cepts. Int. Symposium of Hungarian Researchers on
Comp. Intelligence WF Model Representation Concepts,
7, 2002.

[Wohed et al., 2003] P. Wohed, W.M.P. van der Aalst,
M. Dumas, and A.H.M. ter Hofstede. Analysis of web
services composition languages: The case of ”‘bpel4ws”’.
In ER03, LNCS 2813, pages 200–215, 2003.

Albert Pla, Beatriz López, Javier Murillo

60

Stochastic programming as a tool for emergency logistics in natural floods

Patricio Lamas, Rodrigo A. Garrido
Universidad Adolfo Ibanez

Santiago, Chile
rodrigo.garrido@uai.cl

Abstract

Catastrophic events pose hard logistics chalenges,
because the transportation and/or communication
networks are damaged and supply chain capac-
ities are affected. Under these circumstances,
the demand patterns change in shape and magni-
tude. Thus the standard array of consumption typi-
cally forecasted by producers and distributors is no
longer valid and hence standard logistics practices
are unable to deliver goods and services on time
at the right place. This article presents a modeling
framework to assist decision makers in the planning
stage of immediate assistance of natural disasters
victims. The modeling framework gives an optimal
inventory policy for emergency supplies and opti-
mal fleet distribution. In this article, floods are the
only possible events in the foreseeable future. It is
possible to establish a stochastic process to repre-
sent the probabilistic occurrence of floods in differ-
ent zones throughout a year.
The mathematical model that optimizes the inven-
tory levels flows and vehicles allocation is a large
size stochastic integer programming model. The
model is (approximately) solved through sample
average approximation. An example is provided.

1 Introduction
Most of the logistics systems are designed to operate un-
der standard conditions, i.e., when the transportation and
communication networks are fully operative, the suppliers
are able to deliver what they are asked and the demand
patterns fluctuate within (somewhat) known bounds, as well
as availability of human resources and vehicles to distribute
products and services from production sites to consumption
points. Even under this scenario, the logistics strategy and
operation are rather complex tasks both for the size of the
instances to be solved and for the type of models to be solved
when trying to optimize sensible variables such as inventory
levels or sequences of vehicles stops under time constraints.
However, this already complex situation becomes much
more cumbersome when there is uncertainty on some (or all
of the) system´s components. That is the case in the logistics
of emergencies right after a natural disaster has occurred.

Typically, there will be victims that need prompt attention
in several dimensions: health care, food, water, safety, and
childcare among others. However, the means to deliver the
assistance may have been severely damaged by the natural
disaster and hence the standard supply plans of the various
industries involved in the provision of these goods do not
hold in the disastrous scenario. Emergency logistics plans
consider pre-positioning supplies and vehicles to reduce the
travel times as well as transportation capacity; in addition,
an optimal assignment of supplies and vehicles to a given
location assures the minimization of total systems cost while
at the same time satisfying time constraints.

Natural disasters fall under the category of low-probability
high-consequence events, both in terms of human, animal and
economic losses. In this article we focus only on disasters that
exhibit a seasonal and/or spatial recognizable pattern that can
be adequately represented by a (computationally) tractable
stochastic process. That is the case of natural floods, which
occur mostly during the rain seasons and affect mostly low
lands or plain enclosed areas. Thus, their occurrence pattern
can be represented by a certain space-time probability dis-
tribution model. Floods can be generated by a number of
factors, where excessive rain ranks among the most common
natural causes of floods in Chile, affecting mostly cattle and
rural towns.

1.1 Objective
The aim of this article is to develop a modeling structure
to assist the decision makers in tactical aspects of the
emergency logistics after a flood occurrence, answering the
following questions: What type and quantity of products
should be kept in stock at each location and period within
the area of interest and time horizon respectively? and, How
to transport the supplies from the stocking facilities to the
demand points at minimum cost and time?

1.2 Literature Review
In spite of the enormous relevance that emergency logistics
has for the current society, the number of publications in
this topic is considerably lower than that of commercial
logistics. The most cited publication on emergency logistics,
related to natural disasters, is [Ozdamaret al., 2004], which

61

focuses on operational decisions in natural disasters in
general. [Fiedrichet al., 2000], presents a study for strategic
decisions in the case of earthquakes. [Changet al., 2007],
develops a strategic model for the case of floods, considering
different scenarios. The type of model developed in this
article falls into the category of stochastic programming.In
particular, we developed a probabilistic programming model.
Recently, [Pagnoncelliet al., 2009; Luedtke and Ahmed,
2008], present methods to solve real-case problems involving
probabilistic programming modeling.

To the knowledge of the authors, at the time this article was
written, no articles have been published with developments
in probabilistic programming models applied to tactical
decisions in emergency logistics.

2 Problem Description
2.1 Some Characteristics of a Natural Disaster
After the occurrence of a natural disaster, a number of nega-
tive impacts reach the population in the affected area. In the
case of rural areas, where cattle raising is the main economic
activity, the floods endangers the animal production as well
as the crops used to feed the cattle, generating a deficit in
supplies. Therefore, after a flood the cattle producers will
demand forage, fresh water, nutritional supplements and
medicines in larger amounts than they would normally do.
The latter is an emergency demand, which must be satisfied
as quickly as the transportation and communication networks
allow. In this case the local authority is the the responsible
for delivering the emergency supplies accurately and on
time. These situations typically involve a minimum scale
time of 4 seasons, a spatial span between 5 and 15 zones,
at least 2 types of vehicle (e.g. dry and reefer) and at least
2 types of supplies (e.g. water and solid foods). From the
tactical perspective, the emergency logistics should aim
to maintain levels of inventory of (a few) urgently needed
goods, sufficiently high to satisfy the expected demand for
them after an event, but at the same time not too high to avoid
costly excessive stock. That means that the inventory levels
should guarantee the satisfaction of demand to a certain
confidence level, i.e., to an acceptable degree of failure. For
instance, a desired objective could be to find the levels of
inventory that assures that demand will be satisfied at leastin
the95% of the cases. Additionally, the demand satisfaction
must not only be within the desired confidence level but
also must be done at minimum cost, where the cost is any
generalized distance that may include response time and
resource consumption, among others.

The stochasticity inherent to the occurrence of floods
makes the demand function to change abruptly from zero
to a high level of consumption. This is a characteristic
rarely seen in the consumption of standard goods (or goods
under standard conditions) and hence the standard levels
and location of stocks may not be able to fulfill the demand
within acceptable time limits after a flood has stroke an area.

2.2 System Agents
Products Suppliers
These agents are willing to offer a set of products of potential
demand. Finished products are stocked in different locations
spread out within an area significantly larger than any
affected zone. If an emergency occurs, some of the products
would be retrieved from one or more depots in the amounts
that a minimum cost flow program recommends. Note that
prices may vary between producers as well as within the
same producer across time periods.

Transportation Providers
Carriers offer the service of moving goods from the suppliers
depots to the demand points. They operate with a fleet
of vehicles that are either parked in different locations or
moving between a large number of origins and destinations.
Thus, within their whole fleet, it is possible to ascribe an
available fleet per location during any given period. The
transportation tariffs are charged per unit of freight per
travelled distance. The tariffs may vary among different
carriers as well as within the same carrier across time periods.

Vehicles within a fleet are not necessarily homogeneous.
Certain products need a special type of vehicle (e.g. vac-
cines) and hence there is a compatibility matrix which shows
acceptable vehicle-product pairs.

Demand Points
They correspond to geographic zones affected by the flood
or specially designated loading/unloading facilities. These
zones represent the demand for products (consumption) even
though the actual consumption might take place in a different
location. The magnitude of the demand at these zones is
formed by aggregation of individual demands for all the
affected cattle producers assigned to that particular zone.

3 Modeling the Problem
Both the time horizon and the geographic scope are defined
a priori by the decision maker. The geographic area is
subdivided into regions and the time horizon is divided
into discrete periods. The demand for products that would
be generated by a flood must be forecasted on this spatio-
temporal grid. Those demand forecasts, along with some
initial conditions, define an instance of the problem to be
solved.

At any of the regions of the specified geographic partition,
at a certain time period a flood may occur with a given
probability. This probability is drawn from the history of
flood records for similar seasons in the past.

For any given region and time period, the probability of
flood occurrence can be estimated via a Bayesian Processor
of Forecasts [Kelly and Krzysztofowicz, 1994] which maps
both an a priori description of the uncertainty about flood
occurrence and its magnitude, and a posterior description

Patricio Lamas, Rodrigo A. Garrido

62

of uncertainty about flood occurrence and its magnitude,
conditioned on a flood magnitude forecast. Note however,
that the accuracy of these forecasts will largely depend on
the type of phenomenon producing the flood. For instance,
in forecasting hurricane-induced floods or when a severe
thunderstorm is developing, there may be little uncertainty
about the large amount of rainfall to be produceed, but there
may be large uncertainty about its spatio-temporal location.
This situation would imply significant uncertainty regarding
the occurrence of rainfall over critical points in the studyarea
within the reach of the storm.

Once the event strikes a populated area, there is an
immediate generation of demand for certain basic products
(e.g. fresh water and food for cattle). Then, the magnitude
and composition of the demand will change probabilistically
according to the initial conditions and the severity and scope
of the emergency. While some of the initial conditions can
be accurately known (such as number of cattle producers,
inventory at hand, and operational characteristics of the
potentially affected area), other conditions (such as the
severity and duration of the event) cannot be predicted with
acceptable degrees of accuracy. Therefore, it is necessaryto
fit a set of probability distribution functions to representthe
magnitude of the demand and the possible scenarios that a
particular realization of the event would generate.

On top of the uncertainty posed by the demand function,
there is another source of uncertainty that must be taken
into consideration: the capacity loss on the transportation
network. Indeed, the networks normal conditions are affected
not only by direct action of the catastrophic event but also for
the impulsive behavior of users who may overcharge some of
the arcs creating extra congestion with unnecessary trips that
preclude the timely access of emergency teams. Addition-
ally, the media exposure generates compulsive donations of
unwanted items that may saturate the logistic system with the
convergence ofmateriel that is both unnecessary and hard to
handle.

3.1 Mathematical Formulation of the Main
Problem

This section presents the formal modeling of the problem at
hand, based on the conceptual description provided in the
previous section.

General Definitions
The stochasticity of the demand vector imposes the definition
of various probabilistic parameters:
pti: Probability that a flood occurs at locationi during period
t.
P t
i : Bernoulli random variable which takes value1 with

probabilitypti.
ρpta,tbi,j : Correlation betweenptai andptbj , for locationsi and
j, and periodsta andtb.

The demand function for productp, at locationi, during
periodt is defined as follows:

Dt
ip =

{
dtip with probabilitypti
0 with probbility 1− pti

(1)

dtip ∼ F t
ip(x) (2)

F t
ip(x) is some probability distribution function over a real

non-negative domain.

Analogous to the case of a flood, the demand for products
may also exhibit significant correlation both in time and
space. Accordingly, we define:
ρdta,tbi,j : Correlation betweendtaip anddtbjq, for locationsi and
j, and periodsta andtb.

The Optimization Problem
The solution to this problem is aimed to assist the decision
maker in tactical aspects of the emergency logistics after the
flood occurrence. Thus, the model will answer the following
questions:

1. What type and quantity of products (potential demand)
should be kept in stock at each location and period
within the area of interest and time horizon respectively?

2. How to transport the demanded products from the
stocking facilities to the demand points at minimum
(generalized) cost?

To answer these questions we need to establish the models
parameters and variables:
I: Number of locations within the area of interest.
Φ: Set of all the potentially affected locationsi = {1 . . . I}.
P : Number of products.
Π: Set of all the potentially demanded products
p = {1 . . . P}.
T : Number of periods within the planning horizon.
Ψ: Set of all the periodst = {1 . . . T}.
C: Number of vehicle classes.
Ω: Set of vehicle classesc = {1 . . . C}.
Dt

ip: Demand for product (random variable)p, in locationi,
during periodt.
dtip: A realization ofDt

ip p, in locationi, during periodt.

uc: Capacity of vehicle classc.
wpc: Compatibility matrix product-class. Typical element
(p, c) takes value1 if product p, can be transported on the
vehicle classc and0 otherwise.
V t
ic: Number of vehicle classesc, available in locationi, at

the beginning of periodt.
Ljp: Inventory capacity at locationj, for productp.
cvtijkp: Cost of transporting one unit of productp, to the lo-
cationk, originated from a supplier in locationj, transported

Stochastic programming as a tool for emergency logistics in natural floods

63

on a vehicle available in locationi, during periodt.
cltijc: Cost of relocating a vehicle classc, sent from location
i to locationj, during periodt.
citjp: Unitary inventory cost for productp, stocked in a depot
located inj, during perodt.
α: Level of confidence; at least100(1 − α)% of the demand
must be satisfied.

3.2 Variables
The following are the modeling variables:
xt
ijkp: Flow of productp, sent to locationk, originated from

a supplier in locationj, transported by a vehicle available in
locationi, during periodt.
ytijc: Flow of vehicle classc, relocated from locationito
locationj, during periodt.
Itjp: Inventory of productp, kept in depot located inj, at the
beginning of periodt.

With the parameters and variables previously defined, the
following mixed integer programming model is presented:

min
∑

t∈Ψ

∑

p∈Π

∑

k∈Φ

∑

j∈Φ

∑

i∈Φ

cvtijkpx
t
ijkp+

∑

c∈Ω

∑

j∈Φ

∑

i∈Φ

cltijcy
t
ijc+

∑

t∈Ψ

∑

p∈Π

∑

j∈Φ

citjpI
t
jp

(3)

P

∑

j∈Φ

∑

i∈Φ

xt
ijkp ≥ Dt

kp ∀ k ∈ Φ, p ∈ Π, t ∈ Ψ

 ≥ α

(4)∑

p∈Π

∑

k∈Φ

∑

j∈Φ

wpcx
t
ijkp ≤ uc

∑

j∈Φ

ytijc ∀ i ∈ Φ, t ∈ Ψ, c ∈ Ω

(5)∑

j∈Φ

ytijc ≤ V t
ic ∀ i ∈ Φ, t ∈ Ψ, c ∈ Ω (6)

∑

k∈Φ

∑

i∈Φ

xt
ijkp ≤ Itjp ∀ j ∈ Φ, p ∈ Π, t ∈ Ψ (7)

Itjp ≤ Ljp ∀ j ∈ Φ, p ∈ Π, t ∈ Ψ (8)

xt
ijkp, I

t
jp ∈ R+ ∀ i ∈ Φ, j ∈ Φ, k ∈ Φ, p ∈ Π, t ∈ Ψ

(9)
ytijc ∈ Z+ ∀ i ∈ Φ, j ∈ Φ, c ∈ Ω, t ∈ Ψ (10)

The objective function (3) has three terms: the cost of
transporting products to the disaster areas; the cost of moving
vehicles between depots, shipping origins and shipping desti-
nations; the cost of carrying prepositioned inventory. Theset
of constraints (4) ensures the demand satisfaction. The con-
straint set (5) restricts the available transportation capacity for
each period and site. The constraint set (6) controls that the
number of transferred vehicles does not exceed its availability
for each period. The constraint set (7) ensures that the flows
of products do not exceed the initial inventory available to
the suppliers. Constraint set (8) controls that the initialstock

level does not exceed the inventory capacity. Finally, the con-
straint sets (9) and (10) impose integrality and non negativity.
If it was not for the cumbersome constraint (4), this model
could be solved through standard mixed integer programming
methods. Unfortunately, the shape of (4) precludes that ap-
proach. Consequently, another technique must be used to in-
corporate the inherent stochasticity. One such approach isthe
Sample Average Approximation method described in the fol-
lowing section.

4 Sample Average Approximation
In this section, a Sample Average Approximation (SAA)
scheme is implemented (as presented in [Pagnoncelliet
al., 2009]). The general idea is to replace the constraint
(4) by a (larger) set of new deterministic constraints that
approximate the stochastic model; it will be a larger model
but simpler, because it does not consider stochasticity at all,
nevertheless it must be solved repeatedly to simulate the
probability of event occurrence considered in the original
model, which increases the complexity of the problem. The
SAA scheme implemented in this research solves a series of
scenarios consisting in different instances of the modified
optimization model (expressions 11 to 20), each instance
corresponding to a realization of a Monte Carlo simulation
of demands (expression 1). The solution of this series of
instances of the modified optimization model provides a
lower and upper bound to the solution of the original problem.

Let ztnkp be binary variables that measure the number of
times that a demand constraint is not satisfied. Thus, the
following modified optimization model is defined for the
generated samples.

min

N∑

n=1

∑

t∈Ψ

∑

p∈Π

∑

k∈Φ

∑

j∈Φ

∑

i∈Φ

cvtijkpx
tn
ijkp+

N∑

n=1

∑

c∈Ω

∑

j∈Φ

∑

i∈Φ

cltijcy
tn
ijc+

∑

t∈Ψ

∑

p∈Π

∑

j∈Φ

citjpI
t
jp

(11)

s.a.
∑

j∈Φ

∑

i∈Φ

xtn
ijkp + ztnkpD

tn
kp ≥ Dtn

kp

∀ k ∈ Φ, p ∈ Π, t ∈ Ψ, n = 1, . . . , N

(12)

∑

p∈Π

∑

k∈Φ

∑

j∈Φ

wpcx
tn
ijkp ≤ uc

∑

j∈Φ

ytnijc

∀ i ∈ Φ, t ∈ Ψ, c ∈ Ω, n = 1, . . . , N

(13)

∑

j∈Φ

ytnijc ≤ V t
ic ∀ i ∈ Φ, t ∈ Ψ, c ∈ Ω, n = 1, . . . , N

(14)∑

k∈Φ

∑

i∈Φ

xtn
ijkp ≤ Itjp ∀ j ∈ Φ, p ∈ Π, t ∈ Ψ, n = 1, . . . , N

(15)

Patricio Lamas, Rodrigo A. Garrido

64

Itjp ≤ Ljp ∀ j ∈ Φ, p ∈ Π, t ∈ Ψ (16)

N∑

n=1

∑

t∈Ψ

∑

p∈Π

∑

k∈Φ

ztnkp ≤ N(1− γ) (17)

xtn
ijkp, I

t
jp ∈ R+ ∀ i ∈ Φ, j ∈ Φ, k ∈ Φ, p ∈ Π,

t ∈ Ψ, n = 1, . . . , N
(18)

ytnijc ∈ Z+ ∀ i ∈ Φ, j ∈ Φ, c ∈ Ω, t ∈ Ψ, n = 1, . . . , N
(19)

ztnkp ∈ {0, 1} ∀ k ∈ Φ, p ∈ Π, t ∈ Ψ, n = 1, . . . , N (20)

where, the upper index́ındice n is the sample number,
N is the sample size andγ is the desired level of accuracy
to solve the approximated problem. this level of service is
not necessarily identical to the originalα level originally
defined. Constraint (17), allows that the number of times that
the demand satisfaction constraint (12) is violated , does not
exceeds1− γ.

4.1 Lower Bound
To obtain a lower bound a sample average approximation
scheme is applied (see [Pagnoncelliet al., 2009]). The first
step is to find two integer numbersM andN such that:

θN :=

⌊(1−γ)N⌋∑

i=0

(
N

i

)
αi (1− α)

N−i (21)

andL being an integer number such that:

L−1∑

i=0

(
M

i

)
θiN (1− θN)

M−i ≤ 1− β (22)

Then, a set ofM independent samples must be generated:
Dt1m

kp , . . . ,DtNm
kp ,m = 1, . . . ,M each one of sizeN .

For each generated sample, the above modified optimiza-
tion problem must be solved.

The optimal solution for each sample, called̂θmN ,
m = 1, . . .M , must be arranged in non decreasing order,
θ̂
(1)
N , . . . , θ̂

(M)
N , whereθ̂(i)N is the i-th smallest value.

Finally, the valuêθ(L)
N will be a lower bound for the optimal

solutyion of the original problem, with a significance levelof
at leastβ.

4.2 Upper Bound
To obtain an upper bound, the method put forward by
[Luedtke and Ahmed, 2008] will be applied. One of the
findings of that article is the sizeN of a sample to guarantee
that the solution of the modified optimization problem be
in fact a feasible solution for the original problem, with a

significance level ofβ. The latter is obtained as follows:

N ≥ 2

(α− γ)
2 log

(
1

1− β

)
+

2m

(α− γ)
2 log

⌈
2DL

α− γ

⌉

(23)

This result gives a theoretical guide for the search of
the sample sizeN . However, the problem size (given the
obtained value ofN) could be prohibitively large.

An alternative to this method is to solve the modified
optimization problem with a smaller value ofN and then
checking (a porteriori) the fulfilment of the stochastic
constraint.

This a porteriori checking can be done by using a sam-
ple of sizeN ′, and then for the samplesDt1

kp, . . . ,D
tN ′
kp

counting the number of times that this expression holds:∑
j∈Φ

∑
i∈Φ xtn

ijkp ≥ Dtn
kp.

The upper bound will be the objective’s function value,
corresponding to the solution with the highest value within
all the feasibel solutions, once the a posteriori checking was
performed (see [Luedtke and Ahmed, 2008]).

5 Numerical Example

In this section a numerical instance is presented, applyingthe
above described methods to obtain both the lower and upper
bounds.

The example consists of an instance with six locations,
four periods, two products and two types of vehicle. Each
location faces an iid lognormally distributed demand with
mean 100 and a standard deviation of 10. For each period,
the probability of a natural flood is assumed to be 0.2, with
spatial and temporal correlations generated randomly.

5.1 Lower Bound

Using the methodology presented in section (4.1), the rele-
vant parameters were found:M = 172, N = 20, L = 12,
considering the following values:α = 0.9, β = 0.99, γ = 1.

Using CPLEX 12, the modified optimization problem (pre-
sented in section 4) was solvedM = 172 times. Each in-
stance consisted of 960 binary variables, 5,760 integer vari-
ables and 34,608 continuous variables. Demands were gener-
ated with a Monte Carlo simulation routine using the param-
eters given above.
The 172 obtained solutions were then sorted in a non-
decreasing order, obtaining a lower bound inL = 12, which
value corresponds to47, 392.

Stochastic programming as a tool for emergency logistics in natural floods

65

5.2 Upper Bound
To obtain the upper bound, we considered the valuesN = 30
andγ = 0.95, obtaining a feasible solution, which was tested
a posteriori, considering100 randomly generated demands.
The instance consisted in 1,440 binary variables, 8,640 inte-
ger variables and 51,888 continuous variables.
The solution found was feasible in all of the100 considered
demands, which is a successful result given the high level of
confidence set initially:α = 0.9. The optimal value for each
one of the100 instances is the following. Minimum value
= 52, 989; Maximum Value =67, 124; Average =55, 991.6;
Standard deviation =4, 601.4.

Thus, the upper bound to the original problem corresponds
to 67, 124.

5.3 Results Analysis
The difference between both bounds is41.6%. This gap
is larger than that of other published results [Luedtke and
Ahmed, 2008]. However, the type of problem addressed in
this case is rather different from those previously tackled
in the published literature. Indeed, natural floods are low
probability-high consequence events, which means that
the stochastic parameters exhibit a high variability when
compared to other problems; in this case the coefficient of
variation is2, which is considerably higher than those in the
reviewed literature (between 0.1 and 0.5 depending on the
case).

Even though there is no formal indication about how
conservative both bounds are, we can conclude, with high
level of confidence, that the solution found for the upper
bound will satisfy the emergency demands with the desired
significance level. This is, of course, a highly valuable input
to the decision makers, in spite of not knowing the exact
value of the optimal objective function.

6 Conclusions
The occurrence of a flood is an event of low probability
but often of high consequences in terms of material costs
and sometimes human or animal losses. These charac-
teristics (along with the size of realistic instances) make
that phenomenon unsuitable to be modeled with standard
mathematical programming techniques, which assume
deterministic parameters.

In this article, the authors presented a stochastic program-
ming model to represent tactical decisions in the logistics
of emergencies after the occurrence of a natural flood. The
model attempts to find the optimal levels of inventory in
different locations as well as the flows of materiel from these
locations to the affected areas. The model also gives the
fleet size that must be available at each location to distribute
an array of different types of products (which may need
different types of vehicle to be delivered). In addition, the
authors proposed a methodology to find an approximation
to the optimal solution of that model. The approximation is

found through the application of a recently published scheme
of sample average approximation.

The proposed model and solution approach are general in
the sense that no specific probability distribution function is
assumed (or necessary) and the pattern of spatial and/or tem-
poral correlations can be totally general. The applicability
of this modeling structure is conditioned on the capacity of
the modeler to generate spatiotemporal patterns similar to
those observed in the real scenario as well as the capacity
to handle the large size of the resulting instances to be solved.

The modeling structure was applied to a test instance with
six locations, two prodcuts and four periods. The spatial and
temporal correlations between flood-occurrence probabilities
were generated randomly. Through the described method-
ologies upper and lower bounds were found for the original
optimization problem. The gap between both bounds was
relatively large(41.6%). However, the solution for the upper
bound satisfies the emergency demands with the desired level
of confidence, which is a very useful result for the decision
makers under the preassure of delivering emergency aid in
extreme events.

Acknowledgments
The authors would like to express their gratitude to

FONDECYT through Grant 1080189, as well as the partial
funding by NSF project DRU: contending with materiel con-
vergence: optimal control, coordination, and delivery of crit-
ical supplies to the site of extreme events, with Principal In-
vestigator Jośe Holguin-Veras.

References
M.S. Chang, Y.L. Tseng, and J.W. Chen. A scenario plan-

ning approach for the flood emergency logistics prepara-
tion problem under uncertainty.Transportation Research
Part E: Logistics and Transportation Review, 43(6):737–
754, 2007.

F. Fiedrich, F. Gehbauer, and U. Rickers. Optimized resource
allocation for emergency response after earthquake disas-
ters.Safety Science, 35(1-3):41–57, 2000.

K.S. Kelly and R. Krzysztofowicz. Probability distributions
for flood warning systems.Water Resources Research,
30(4):1145–1152, 1994.

J. Luedtke and S. Ahmed. A sample approximation approach
for optimization with probabilistic constraints.SIAM Jour-
nal on Optimization, 19(2):674–699, 2008.

L. Ozdamar, E. Ekinci, and B. Kucukyazici. Emergency lo-
gistics planning in natural disasters.Annals of Operations
Research, 129(1):217–245, 2004.

BK Pagnoncelli, S. Ahmed, and A. Shapiro. Sample Average
Approximation Method for Chance Constrained Program-
ming: Theory and Applications.Journal of optimization
theory and applications, 142(2):399–416, 2009.

Patricio Lamas, Rodrigo A. Garrido

66

Re-organization in Warehouse Management Systems

Huib Aldewereld, Frank Dignum, and Marcel Hiel
Utrecht University - Institute of Information and Computing Sciences

Utrecht, The Netherlands, {huib,dignum,hiel}@cs.uu.nl

Abstract
Warehouse Management Systems (WMS) are tradi-
tionally highly optimized to a specific situation and
do not provide the flexibility required in contem-
porary business environments. Agents have been
advocated for their flexible and adaptive nature, but
require organizational structure to ensure that the
system performs as required. Due to changes in the
environment a different organization may be more
productive making re-organization essential. In this
paper, we present an architecture and methodology
for easing the redesign of a WMS. The method
applied is based on heuristics for re-organization
given the environment, the main objectives of the
organization and the current situation.

1 Introduction
Warehouse Management Systems (WMS) are traditionally
centralized, monolithic software systems that are highly opti-
mized for a specific situation. These systems thus guarantee
very efficient operation given some fixed constraints. How-
ever, these systems usually have trouble to achieve flexibil-
ity (such as handling priority orders) and robustness (such as
machine failures). In modern WMS a good balance between
efficiency, flexibility and robustness is of utmost importance.

Agents were introduced to tackle the problem of flexibil-
ity (e.g., see [2; 7]). However, only introducing agents is not
sufficient. An argument against the usage of agents is that
the control is hard to guarantee and that therefore the require-
ments of robustness and efficiency cannot be guaranteed. The
main problem is that efficiency, flexibility and robustness are
aspects that pertain to the system as a whole. Moreover, we
cannot optimize all three at the same time, but have to bal-
ance the three aspects (e.g., more robustness usually means
less efficiency). Thus, when an agent approach is used it does
not mean that each agent has to manage the balance between
the three aspects. However, the distributed nature of this type
of solution makes it very hard to guarantee an overall bal-
ance between the three aspects. In order to prevent anarchy
and regulate the agents within such a system, we propose to
use agent organizations [6]. An agent organization is used
to specify exactly those aspects of the system that need to be
guaranteed by the agents together. Individual agents can have

their own goals and ways of interacting with other agents.
However, because they are designed to fit the agent organiza-
tion their autonomy is limited by the overall objectives of the
organization. E.g., suppose that we have 4 types of tasks oc-
curring equally frequent and four machines that can perform
all tasks. For efficiency sake we probably want each machine
to specialize in one type of task (which might avoid reset time
etc.). However, for robustness sake we want all machines to
perform all tasks. We could choose a balance of having two
machines perform two tasks such that if one fails the other
takes over and work on that task does not completely halt.
How the machines subsequently divide their tasks they might
decide themselves (using agent based solutions for this situa-
tion).

Unfortunately, although organizations provide structure
and stability for regulating a multi-agent system (MAS), the
environment might change in ways such that the organization
no longer guarantees the right performance. For example, af-
ter the introduction of new hardware or product changes, the
WMS may provide a suboptimal solution. In order to fully
use the flexibility provided by agents and maintain the robust-
ness of an organization, being able to re-organize is essential.

However, in order to perform a successful re-organization,
it should be done at the right moment and changing the or-
ganization in a way to perform better. In this paper we will
show how agent organizations can be used to implement a
WMS and how successful re-organizations can be carried out
in this environment.

The alternative to re-organization is to make the agents
themselves adaptive. The distinctive difference between
adaptive agents and re-organization is that in the organization
the knowledge concerning the global (organization-wide) ob-
jectives is explicit. The advantage of having this knowledge
explicit is that it is easier to adjust when modification is nec-
essary.

This paper is structured as follows: In Section 2 we first
introduce a motivating example. Subsequently we show how
agent organizations are used to control the warehouse in Sec-
tion 3 and which criteria are used to measure its success. In
Section 4 we show how re-organizations can be defined using
change patterns and illustrate how they are used to keep the
organization successful under changing circumstances. We
conclude in Section 5 with some observations on our use case
and future work.

67

2 Motivating Example Scenario
A warehouse stores and collects products for customer orders.
These products are typically packed and/or placed in boxes
or containers, generally referred to as Transport and Stor-
age Units (TSU). Figure 1 illustrates our example hardware
configuration for a WMS. This figure contains three types of
components, namely miniloads, conveyorbelts and worksta-
tions. The miniloads are storage units where TSUs are kept,
the conveyorbelts are responsible for transporting TSUs be-
tween miniloads and workstations, and the workstations rep-
resent places where operators pick products from TSUs for
fulfilling the orders. TSUs are not kept at the workstations,
but requested from the miniloads when an order arrives and
returned immediately after picking the required amount of
products to fulfill the order. In our configuration, thus, we
have three miniloads, one conveyorbelt and two workstations.
The boxes on the conveyorbelt represent moving TSUs.1 The
squares with arrows represent buffers where the direction of
the arrow indicates the direction of movement.

Figure 1: Example warehouse configuration

Assume that this WMS performs adequately. However, due
to a successful marketing campaign one particular product
becomes very popular. At a certain point, all components
work at optimal efficiency, however, because of that popular
product the number of orders becomes larger than can be han-
dled per day and therefore the number of outstanding orders
becomes larger and larger. Moreover, because of this delay
customers become unsatisfied due to the long waiting time.

In order to deal with this situation management decides that
the warehouse should be extended, however due to limited
space only two workstations can be added but no miniloads.
As the average miniload is calculated to be able to support
one or two workstations (in processing time), expectations are
that number of orders handled will improve. After placing the
workstations the performance (throughput) increases but not
as much as expected and the number of outstanding orders
still increases.

In the next section we will first describe the basic set-up of
the agent organization that controls the warehouse logistics
and how this supports the balance between efficiency, robust-
ness and flexibility of the WMS. In the rest of the paper we
will show how the changing environment renders the organi-
zation inefficient. In order to determine whether the perfor-

1The color of the TSUs indicates the product family, which is
unimportant in the discussion in this paper.

Figure 2: Organization for Planning

mance can be increased, re-organization is to be considered,
which is explained in the sections after that.

3 Agent-organizations in Warehouse
Management Systems

In [6] we showed how agent organizations are used to balance
flexibility, robustness and scalability. Here we only highlight
the most important aspects of this agent organization model.
In our architecture, we use agents to control every component
(thus miniload, conveyorbelt and workstation). Every agent
is responsible for, and optimizes the efficiency of, its compo-
nent. The agent organization structures the interactions be-
tween agents and provides answers to design questions, such
as: who talks to who?, what is the role of the agent within
the organization?, and what are the objectives that this agent
seeks to achieve?

In the remainder of this section, we describe our layered
approach for modeling agents after which we present perfor-
mance indicators that can be used to evaluate a warehouse
management system.

3.1 Layers
Warehouse management systems are typically thought of
in three layers of operation, namely the plant (execution),
scheduling and planning. This distinction in layers is made
to create a separation of concerns which makes it easier to
create a modular design and thereby support decoupling of
the different aspects of the WMS.

This separation is reflected in our model (for details see
[6]) based on the MASQ meta-model [8]. Each of the lay-
ers of the warehouse management system, that is, the plant,
scheduling and planning layers, correspond to a separate in-
teraction space which defines the particular protocols that the
agents use on that layer. Because each space incorporates
its own implemented business rules and interaction protocols
this improves modularity and maintainability.

Planning Space: “Planning is the process of generating
(possibly partial) representations of future behavior prior to
the use of such plans to constrain or control that behavior” [1].
In our domain this means that orders are assigned to be han-
dled by certain components (without an explicit timing). The
interaction necessary for the assignment of orders is mod-
eled as an agent organization using the OperA framework [3;
4].

The social structure of the agent-organization, which spec-
ifies the roles and the relations between these roles, is shown
in Figure 2. The arrows between the roles indicate depen-
dency relations. From the figure it is clear that there is a role
taking care of incoming orders and that the agents fulfilling
the “Order Picker” role (in our case the workstations) will

Huib Aldewereld, Frank Dignum, Marcel Hiel

68

Presence Stock Management Broker Communication
Order Picker createReplenishCFP registerDeliveryService

createDeliveryProposal requestReplenishProviders
Storage Manager createReplenishProposal registerReplenishService
Order Manager createDeliveryCFP requestDeliveryProviders

Keeping plant active Scheduling Transfer of TSUs For Planning
getNextAction handleIncomingMessage getLeadTime
processAction sendTSUPlacementRequest scheduleTSU

isOutgoingTSUScheduled sendTSUPlacementReply
handleIncomingTSU

Concept Operator Description

O
rg

an
iz

at
io

n

Role addRole(ri) add role ri

removeRole(name) remove role ri

Dependency addDependency(di, rfrom, rto) add dependency di between
role rfrom and role rto

removeDependency(di) remove dependency di

Objective addObjective(oi, di) add objective oi to dependency di

removeObjective(oi, di) remove objective oi from dependency di

Player addPlayer(pj , ri) add player pj to perform role ri

removePlayer(pj) remove player pj

A
ge

nt

Agent addAgent(ai) add agent ai

removeAgent(ai remove agent ai

Presence addPresence(pi, ai, lj) add presence pi to agent ai for layer lj
removePresence(pi, ai) remove presence pi from agent ai

Capability addCapability(ck, pi, ai) add capability ck to presence pi of agent
ai

removeCapability(ck) remove capability ck from presence pi

Name Communication Between Pickers
Change Type Re-organization of planning layer
Trigger A popular product &

nr orders received > nr orders handled (per day)

Change Template

//Organizational model
addDependency(d1,order picker,order picker);
addDependencyObjective(replenish,d1);

//Planning Implementation (for all players p)
//to PickerPlannerPresence
addCapability(p ,registerReplenishService);
addCapability(p ,createReplenishProposal);

//Scheduling Implementation
addCapability(s ,scheduleTSU);

1

Table 1: Planning Capabilities per Goal and Presence

provide the order. In order for the Order Picker to get the
necessary products for the order they ask the agents fulfilling
the “Storage Manager” role (in our case the miniloads) to
provide the products from storage. Finally the Broker main-
tains knowledge about which roles exist in the system and
which service(s) they can provide.
Through this organization structure we already convey that
the incoming orders determine the logistics (we did not in-
corporate a product reception role). We also do not connect
the customers directly with the storage manager. This means
that the order picker decides whether an order should be pro-
cessed and never the storage manager. The underlying reason
to model it this way is that the workstations are known to
form a bottleneck. We therefore want those to be in charge
of the workload. If they are optimally used the whole system
performs optimally.
Besides these basic points we can also get information from
the types of dependencies between the roles. There are dif-
ferent types of dependencies possible, each resulting in a
different type of interaction; bidding [Market], delegation
[Hierarchy], and request [Network]. The protocol that is
used between the agents depends on the kind of interaction
type specified in the organization model. In our case, mar-
ket relations are implemented using the Contract Net Proto-
col, and network relations are implemented as request/inform
messaging. The use of market relations and the Contract
Net Protocol as implementation for service requests means
that, given an appropriate bidding mechanism, balance of the
workload of the components is achieved automatically. Thus
we provide for robustness and flexibility within the organiza-
tion structure. Note that the efficiency of the resulting logistic
process depends on the decision mechanisms of the agents.
Another aspect that can not directly be seen from Figure 2 is
that all miniloads can communicate with all workstations, but
they do not communicate amongst each other. This makes
the configuration very robust and flexible, but potentially less
efficient. It also contributes to an quadratic growing amount
of communication.

The required capabilities of the agents on planning are
summarized in table 1.

Scheduling Space: In our domain scheduling encompasses
three goals, namely (1) supplying the hardware with actions
to perform, (2) transferring TSUs from one component to an-
other, and (3) provide information and the means for planning
such that plans can be created and executed. For each of these
objectives a number of capabilities are required. Table 2 lists
the capabilities that we distinguish.

As can be seen from the above, in our (simple) scenario
scheduling has little independence from planning and thus
we do not provide the social structure for this part as it is

Presence Stock Management Broker Communication
Order Picker createReplenishCFP registerDeliveryService

createDeliveryProposal requestReplenishProviders
Storage Manager createReplenishProposal registerReplenishService
Order Manager createDeliveryCFP requestDeliveryProviders

Keeping plant active Scheduling Transfer of TSUs For Planning
getNextAction handleIncomingMessage getLeadTime
processAction sendTSUPlacementRequest scheduleTSU

isOutgoingTSUScheduled sendTSUPlacementReply
handleIncomingTSU

Concept Operator Description

O
rg

an
iz

at
io

n

Role addRole(ri) add role ri

removeRole(name) remove role ri

Dependency addDependency(di, rfrom, rto) add dependency di between
role rfrom and role rto

removeDependency(di) remove dependency di

Objective addObjective(oi, di) add objective oi to dependency di

removeObjective(oi, di) remove objective oi from dependency di

Player addPlayer(pj , ri) add player pj to perform role ri

removePlayer(pj) remove player pj

A
ge

nt

Agent addAgent(ai) add agent ai

removeAgent(ai remove agent ai

Presence addPresence(pi, ai, lj) add presence pi to agent ai for layer lj
removePresence(pi, ai) remove presence pi from agent ai

Capability addCapability(ck, pi, ai) add capability ck to presence pi of agent
ai

removeCapability(ck) remove capability ck from presence pi

Name Communication Between Pickers
Change Type Re-organization of planning layer
Trigger A popular product &

nr orders received > nr orders handled (per day)

Change Template

//Organizational model
addDependency(d1,order picker,order picker);
addDependencyObjective(replenish,d1);

//Planning Implementation (for all players p)
//to PickerPlannerPresence
addCapability(p ,registerReplenishService);
addCapability(p ,createReplenishProposal);

//Scheduling Implementation
addCapability(s ,scheduleTSU);

1

Table 2: Scheduling Capabilities per Goal

completely in line and enforcing the objectives of the plan-
ning. Mainly, scheduling ensures that the hardware, at all
times, knows what to do next. After the plant gives a notifica-
tion that the current action is finished, the scheduling compo-
nent of the appropriate agent supplies it with the next action
(getNextAction). Furthermore, scheduling maintains a list of
TSUs in the component, as well as those that are planned for
movement (handleIncomingTSU and isOutgoingTSUSched-
uled). Maintaining this list after executing an action is done
by the processAction capability.

As planning is dependent on information from scheduling,
for example in calculating the time it would cost to process a
TSU (leadTime), scheduling components provide capabilities
to get this information, such as the getLeadTime capability.
Furthermore, the scheduling components present the capabil-
ities for scheduling a TSU to be processed by the plant.

3.2 Performance
Organizations have to try to achieve three global objectives,
namely efficiency, robustness and flexibility. An organiza-
tional structure maintains a certain balance of these objectives
with respect to its environment. However, if the environment
changes the balance might shift into an unfavorable direction.
The questions are then: what criteria should be measured in
an organization in order to decide to re-organize and when to
change? In general, efficiency can be linked to throughput
(i.e., the amount of orders processed per day). Robustness is
more difficult to measure. It should be measured by resilience
to failure of machines. One can compare the throughput of
the warehouse when one machine fails with the throughput
of the warehouse where it is configured optimally without
that machine. Finally flexibility depends on environment pa-
rameters. In this case one compares the performance of the
warehouse in case all events were known on forehand with
the case where some events happen unexpectedly.

It is clear that the measurements get more and more diffi-
cult when going from efficiency to robustness to flexibility.
E.g., a warehouse might be very robust with respect to failing
miniloads but very sensitive to failing workstations. In prac-
tice one looks at one or more bottlenecks in the warehouse
and checks the robustness with respect to their failure. The
same holds for flexibility. A warehouse might be very good at
handling priority orders as long as the orders required ‘stan-
dard’ products. However, it may perform poorly when the
priority orders require combinations of products that are rare.
Again, in practice one only measures those cases that are ex-
pected.

Because in our scenario overall efficiency of the warehouse
is the most important objective we use simple throughput as
the performance criterium. Figure 3 illustrates a graph of the
throughput for our running example. The figure contains four

Re-organization in Warehouse Management Systems

69

Figure 3: TSU Throughput for four workstations

lines, one for each workstation. One of these four lines climbs
in the beginning, but then quickly drops to zero. After plac-
ing the two additional workstation the miniloads are not quick
enough to handle all the requests on time, therefore the fourth
workstation is without work most of the time. It is clear that
the organization is not performing optimally in the new con-
figuration. In the next section we will investigate what type of
changes we can make to the organization in order to improve
the performance.

4 Developing Change Patterns for
Re-organization

It is impossible to know all the changes that may affect a
warehouse in advance. Therefore an exhaustive overview of
changes and corresponding action for adaptation is hard to
provide. However, we can provide some general heuristics for
each of the main warehouse objectives: efficiency, robustness
and flexibility. We will first give these general heuristics and
subsequently describe in more detail how the re-organization
of our scenario is realized.

Efficiency When throughput should be increased first one
finds the bottleneck components. Basically the agents indi-
cate their performance as a percentage of their maximal per-
formance. The agents with the highest percentage will be
the bottleneck. The next step is to add more components of
that type (e.g., in our scenario we will add more worksta-
tions). Now two steps should be taken with respect to com-
munication. First it should be checked whether the compo-
nents fulfilling the same role were communicating amongst
each other already. If not, it should be checked whether they
should start such communication now. This communication
is added when the products leaving one component might be
interesting for another component and thus a kind of ”side-
way” logistic step is added.
Finally, it should be checked whether a new role should be
added in between other roles for communication efficiency.
In our case all miniloads communicate with all workstations.
If there are too many of each type each component is all the
time communicating and processing information about possi-
ble work, most of which would be useless. In that case a new
intermediary can be created that makes the decision on divi-
sion of work based on communication with both sides (we

reduce the amount of communication channels from n ∗m to
n+m).

Robustness When robustness has to be increased we have
to create alternative potential workflows. There are two ways
to create alternative workflows. The first is by adding more
components of a certain type. This is handled in the same
way as indicated above for increasing efficiency. The sec-
ond way to create alternative workflows is to connect more
agents fulfilling different roles. In the extreme case every
agent and associated component is connected to every other
agent/component. Of course many connections are useless,
because the associated components cannot exchange their
products (in a meaningful way), but it guarantees that every
possible workflow is indeed covered by the organization. Our
example warehouse looks very robust, because all miniloads
are connected with all workstations. However, they all use the
same conveyorbelt. To make things more robust separate con-
nections could be used for every pair of miniload and work-
station. The decision to create such alternative paths is made
on the basis of the expected rate of failure of each component
and the costs to create and maintain an alternative path.

Flexibility To increase flexibility the general approach is to
create components with more capabilities. In this way each
component is better capable to handle more situations. In
the warehouse domain a relatively cheap way to increase the
capability of a component is to create an input and output
buffer. This creates the possibility for the component to have
more flexibility on deciding what task to perform next (of
course this is a limited form of flexibility, but an often occur-
ring need). Once components get more capabilities it is also
possible to create more alternative workflows, thus increasing
the robustness of the system.
When components have more capabilities, of course, they
also need to have the decision mechanism on how and when
to use the capabilities. Besides that they need the right infor-
mation to make the right decisions. In general this means that
new communication channels have to be created to get the
information to all the components that need it. In the most
extreme case all components can perform all tasks and ex-
change all possible information with all other components.
This is clearly not very cost efficient, but extremely flexible
and robust also.

In general the organization should balance efficiency, ro-
bustness and flexibility and all the required levels should be
attained at a minimum cost (in terms of resources, communi-
cation, and complexity). A re-organization makes sense if the
added expected gain in performance of the system is higher
than the additional costs. Here “performance” is meant in
a wider sense than just throughput, but rather behaviour of
the system with respect to all criteria over a period of time.
Crudely stated: if the gain in profit by the re-organization
is higher than the costs (calculated over a certain period of
time), re-organization makes sense.

Given these general heuristics for re-organization, we now
turn to the concrete example. We describe how to capture the
experiences of redesign such that they can assist developers
in future projects. In particular, we focus on change patterns.
Change patterns, and design patterns in general, provide for
a structured documentation thereby making the transference

Huib Aldewereld, Frank Dignum, Marcel Hiel

70

Presence Stock Management Broker Communication
Order Picker createReplenishCFP registerDeliveryService

createDeliveryProposal requestReplenishProviders
Storage Manager createReplenishProposal registerReplenishService
Order Manager createDeliveryCFP requestDeliveryProviders

Keeping plant active Scheduling Transfer of TSUs For Planning
getNextAction handleIncomingMessage getLeadTime
processAction sendTSUPlacementRequest scheduleTSU

isOutgoingTSUScheduled sendTSUPlacementReply
handleIncomingTSU

Concept Operator Description

O
rg

an
iz

at
io

n

Role addRole(ri) add role ri

removeRole(name) remove role ri

Dependency addDependency(di, rfrom, rto) add dependency di between
role rfrom and role rto

removeDependency(di) remove dependency di

Objective addObjective(oi, di) add objective oi to dependency di

removeObjective(oi, di) remove objective oi from dependency di

Player addPlayer(pj , ri) add player pj to perform role ri

removePlayer(pj) remove player pj

A
ge

nt

Agent addAgent(ai) add agent ai

removeAgent(ai remove agent ai

Presence addPresence(pi, ai, lj) add presence pi to agent ai for layer lj
removePresence(pi, ai) remove presence pi from agent ai

Capability addCapability(ck, pi, ai) add capability ck to presence pi of agent ai

removeCapability(ck) remove capability ck from presence pi

Name Communication Between Pickers
Change Type Re-organization of planning layer
Trigger A popular product &

nr orders received > nr orders handled (per day)

Change Template

//Organizational model
addDependency(d6,order picker,order picker);
addDependencyObjective(replenish,d6);

//Planning Implementation (for all players p)
//to PickerPlannerPresence
addCapability(registerReplenishService,getPlanBody(p),p);
addCapability(createReplenishProposal,getPlanBody(p),p);

//Scheduling Implementation
addCapability(scheduleTSU,getScheduleBody(s),s);

1

Table 3: Change Operators

of knowledge between developers easier. Making this knowl-
edge explicit thereby reduces the time required for (re-)design
and (re-)implementation.

4.1 How to re-organize?
Following a model-based approach, we use models to get
an overview of what can be done. More specific, we use a
model-management approach that was used to describe the
evolution of services [5]. In this model-management ap-
proach, with a model, a complex structure is meant that rep-
resents a design artifact. The usage of models implies manip-
ulation and transformation of one model to another model.
The key idea behind model-management is to develop a set
of algebraic operators that generalizes the transformation op-
erations. In our framework, these operators consist of adding
and removing concepts (and relations) in a model. Opera-
tors are commonly stored in a script. A script is a sequence
of operations that (automatically) transforms one model into
another.

In our approach, we have two types of models, namely the
organizational model, and a model which represents the im-
plementation of the agents. We list the operators for each of
these models in Table 3. These change operators represent all
the possibilities for changing the organization and the agents.
For example, if the organization grows substantially by incor-
porating many more agents, a manager role can be introduced
through the addRole operator. As the organizational model is
a specification, the operators used for this model can be au-
tomated. In other words, a new organizational model can be
automatically derived by applying these operators to the old
model.

Next to the organization model, the agent(s) implementa-
tion should also be changed to reflect the new organization.
However, this might imply giving agents new goals, new pro-
tocols, etc. Because we do not desire to restrict the agent
implementation we only require the agents to incorporate the
concepts in Table 3. Here we provide only guidelines and re-
quirements for how to structure the implementation such that
these operators can be used to precisely determine where to
update the implementation.

Following our model of an agent, we can either add or
remove presences for agents in the different spaces. Fur-
thermore, capabilities can be added to or removed from the
different presences at both planning and scheduling. Note

Presence Stock Management Broker Communication
Order Picker createReplenishCFP registerDeliveryService

createDeliveryProposal requestReplenishProviders
Storage Manager createReplenishProposal registerReplenishService
Order Manager createDeliveryCFP requestDeliveryProviders

Keeping plant active Scheduling Transfer of TSUs For Planning
getNextAction handleIncomingMessage getLeadTime
processAction sendTSUPlacementRequest scheduleTSU

isOutgoingTSUScheduled sendTSUPlacementReply
handleIncomingTSU

Concept Operator Description

O
rg

an
iz

at
io

n

Role addRole(ri) add role ri

removeRole(name) remove role ri

Dependency addDependency(di, rfrom, rto) add dependency di between
role rfrom and role rto

removeDependency(di) remove dependency di

Objective addObjective(oi, di) add objective oi to dependency di

removeObjective(oi, di) remove objective oi from dependency di

Player addPlayer(pj , ri) add player pj to perform role ri

removePlayer(pj) remove player pj

A
ge

nt

Agent addAgent(ai) add agent ai

removeAgent(ai remove agent ai

Presence addPresence(pi, ai, lj) add presence pi to agent ai for layer lj
removePresence(pi, ai) remove presence pi from agent ai

Capability addCapability(ck, pi, ai) add capability ck to presence pi of agent ai

removeCapability(ck) remove capability ck from presence pi

Name Communication Between Pickers
Change Type Re-organization of planning layer
Trigger A popular product &

nr orders received > nr orders handled (per day)

Change Template

//Organizational model
addDependency(d6,order picker,order picker);
addDependencyObjective(replenish,d6);

//Planning Implementation (for all players p)
//to PickerPlannerPresence
addCapability(registerReplenishService,getPlanBody(p),p);
addCapability(createReplenishProposal,getPlanBody(p),p);

//Scheduling Implementation
addCapability(scheduleTSU,getScheduleBody(s),s);

1Table 4: Change Pattern Communication Between Pickers

that these capabilities provide only the skeleton functionali-
ties and that they still have to be programmed.

In order to enhance reusability of existing code and thereby
reduce the time to implement the new WMS, the addition of
new capabilities should be done mainly based on the existing
capabilities. That is, the operators that are specified should
preferably exist in other presences, such that the developer
already has an idea of what the capability should do and what
decisions are important for this capability.

4.2 Example Scenario: Communication Between
Pickers

We return to our running example scenario. With the addi-
tional workstations the number of orders handled becomes
larger but the new configuration did not solve the complete
problem. The solution found by the warehouse manufacturer
is that TSUs containing the popular product need not be re-
turned to the miniload but can be send directly between work-
stations if needed. This cuts the traveling time back to the
miniload as well the processing time of the miniload for get-
ting the TSU out of the rack.

This change requires a re-organization where workstations
do not only communicate with the miniloads, but also com-
municate with other workstations in order to request and pro-
pose replenishments. The pattern for this situation is shown
in Table 4. The change template shows the operators needed
for creating the new WMS. The first two operators apply to
the organizational model and can be automatically applied.
The other operators affect the implementation and cannot
be automatically applied. These operators add capabilities
to presences of agents on both the scheduling and planning
space. On the planning space the capability should be added
that pickers register themselves as replenish service providers
at the broker. This causes them to be contacted if compo-
nents (pickers) require replenishment. Furthermore, the cre-
ateReplenishProposal should be added such that pickers can
create proposals to answer to the call-for-proposal (cfp) of
the Contract Net Protocol. In the scheduling space the TSU
should be scheduled to go to a picker instead of back to the
miniload. Therefore the capability should be added to sched-
ule the TSU.

In our change pattern, the capabilities can be reused from
other components. For example, the createReplenishProposal
is already a capability of the miniloads, however, the reason-

Re-organization in Warehouse Management Systems

71

Figure 4: TSU Throughput with picker communication

ing to decide whether a TSU is available differs whether it is
in the miniload or in a picker.

The result of applying this change pattern is shown in Fig-
ure 4. As can be seen when comparing Figures 3 and 4,
the fourth workstation increased its throughput by roughly
40 percent, due to the communication between pickers. This
shows that the problem has been solved using the heuristic
mentioned in the beginning of this section. First the manage-
ment located the bottleneck of the old warehouse (the work-
stations) and added more components of that type. This in-
creased performance slightly. Second, the flow of product
TSUs was improved by enabling horizontal communication
between the pickers. Note also that the robustness of the
warehouse went up as well (but only with respect to situa-
tions where workstations fail).

5 Conclusion
Although in Warehouse Management Systems efficiency is of
prime concern it is clear that this has to be balanced with ro-
bustness and flexibility of the system. We have shown how
agent organizations can be used to balance efficiency, robust-
ness and flexibility of a system. However, due to changing
circumstances in the environment an organization might not
keep the right balance over time. Thus re-organization of
agent-organizations is essential in an evolving environment.
In order for the re-organization to have a positive effect we
first have to check which criteria could be used to measure
the performance of the organization with respect to each of
the aspects. For efficiency this is reasonable unique and can
be captured by throughput given a set of resources. Robust-
ness and flexibility have to do with responses to resource and
communication failures and “unexpected” events. So, the cri-
teria should actually be detailed with respect to the kind of
failures and “unexpected” events. We have given some gen-
eral criteria and subsequently described some general heuris-
tics for re-organization scripts based on these criteria. In the
example scenario it is clear that when the throughput of some
of the newly added workstations is almost zero the organiza-
tion is performing badly.

The heuristics that were used to change the Warehouse or-
ganization had an effect on organization efficiency; if a role
forms a bottleneck, additional players of that role can be
added to distribute the load. This change, however, shifted

the bottleneck to the miniloads, which did not perform op-
timally due to lack of coordination between them. Several
things could have been done to remedy the situation. The
first would be to add additional miniloads, but this is costly
(and not possible given the space limitations in our scenario).
Secondly, a manager role could have been added to the pick-
ers to streamline the distribution of work, and allow for the
reuse of replenishment TSUs among the pickers. This would,
however, add another layer in the organization (complicating
communication by adding an extra step in the chain) while
the decisions to be taken by that manager are relatively sim-
ple (and can be taken by the miniloads themselves). There-
fore the option we chose (which is less drastic and more flex-
ible) was to allow for horizontal communication between the
picker agents. We saw that this change could be captured
by change patters that guide the re-organization process. Of
course, the next steps will be to further investigate heuristics
that guarantee at least a certain amount of improvement in
efficiency, robustness, and/or flexibility while keeping a right
balance given the changing environment. And we will test our
heuristics systematically in many different types of scenarios.

Acknowledgment
This work has been carried out as part of the FALCON project
under the responsibility of the Embedded Systems Institute
with Vanderlande Industries as the industrial partner. This
project is partially supported by the Netherlands Ministry
of Economic Affairs under the Embedded Systems Institute
(BSIK03021) program.

References
[1] Austin Tate in the MIT Encyclopedia of Cognitive

Science. Planning. http://cognet.mit.edu/
library/erefs/mitecs/tate.html.

[2] R.S Chen, K.Y. Lu, and C. C. Chang. Intelligent ware-
housing management systems using multi-agent. Int. J.
Comput. Appl. Technol., 16(4):194–201, 2003.

[3] Virginia Dignum. A Model for Organizational Interac-
tion: based on Agents, founded in Logic. PhD thesis,
Universiteit Utrecht, 2004.

[4] Virginia Dignum and Huib Aldewereld. OperettA:
Organization-oriented development environment. In
LADS2010@MALLOW, 2010.

[5] Marcel Hiel. An Adaptive Service-Oriented Architecture
- Automatically solving Interoperability Problems. PhD
thesis, Tilburg University, September 2010.

[6] Marcel Hiel, Huib Aldewereld, and Frank Dignum. Mod-
eling warehouse logistics using agent organizations. In
CARE’ 10, LNCS. Springer-Verlag, to appear.

[7] Teruaki Ito and S. M. Mousavi Jahan Abadi. Agent-based
Material Handling and Inventory Planning in Warehouse.
Journal of Intelligent Manufacturing, 13:201–210, 2002.

[8] Tiberiu Stratulat, Jacques Ferber, and John Tranier.
MASQ: Towards an Integral Approach to Interaction. In
AAMAS ’09, pages 813–820, 2009.

Huib Aldewereld, Frank Dignum, Marcel Hiel

72

