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Abstract. The paper investigates belief-desire-intention (BDI)
agents models in multiagent systems. In the spatial context, the
agents’ knowledge about their environment is often uncertain. We
focus on the problem of autonomous, collision-free motion of agents
on base of uncertain knowledge in transport logistics. Thisproblem is
addressed from a qualitative spatial reasoning perspective. The con-
tribution of this paper is an agent model that integrates BDIconcepts
and spatial analysis capabilities. The approach is evaluated by means
of multiagent simulation in a scenario from the transport logistic do-
main.

1 INTRODUCTION

The trends and changes in logistics lead to decentralized approaches
of control systems for logistic processes that reduce the complexity
of central systems [11]. The former standard approach limits deci-
sions of local entities to a minor scope of action. The decentralized
approach addresses aspects like heterogeneity, adaptivity, and reac-
tivity to dynamically changing external influences. Thus, local enti-
ties which follow global goals of central interest with the capabilities
of dynamic decision-making on an operational level are required. A
well-known example of this approach is distributed controlat auto-
mated container terminals. In this paper, we consider autonomous lo-
gistic entities in individual, closed, dynamic environments like con-
struction sides, airports, and ports. Figure 1 shows a service chain
model example of a construction side. The individual requirements
of the customer determine the requirements on the actors which con-
tribute to the provision of services. In order to achieve a high grade
of individualization of the rendered services of the logistics entities,
the whole service chain and thus the single logistic entities need to be
equipped with the feature of adaptivity. Especially in the spatial di-
mension, the logistic entities have to react adaptively on dynamically
changing requirements, like changing transportation target positions
and transportation routes, and on the dynamic environment.

Logistics is mainly characterized by interacting logistics pro-
cesses. Therefore, effective logistics requires a holistic approach to
take inter- and intra-processual dependencies into account. Failures
of local resources can affect the execution of logistics processes
that use these resources. Due to inter-processual dependencies this
can also affect further processes. Thus, low-level problems, such as
collision-free motion, are relevant for logistic problemsfrom a high-
level perspective along the whole service chain.

In order to address the listed aspects, software agents are used as
representatives of logistic entities that act on their behalf. The paper
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investigates goal-oriented belief-desire-intention (BDI) agents mod-
els in multiagent systems. In the spatial context, the agents’ knowl-
edge about their environment is often uncertain. Agents cannot base
their decisions on static information because of the dynamics of their
environment. In this paper, we consider the problem of autonomous,
collision-free motion of agents on base of uncertain knowledge in
the context of transport logistics. BDI agents are enrichedwith spa-
tial analysis features. For this purpose, qualitative spatial reasoning
based on the RCC-8 calculus provides suitable concepts [19]. We
concentrate on the agent model itself. Sensors and robotic capabil-
ities, that would be required for a real-world scenario, arenot con-
sidered. We integrate standard features of the OpenGIS standard [6]
in an agent environment, and map the functions to the RCC-8 base
relations. The environment is represented as thematic layers (e.g., ob-
stacles). The presented approach is evaluated by means of multiagent
simulation in a scenario from the transport logistic domain.
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Figure 1. Service chain model example of a construction side

The remainder of this paper is as follows. Section 2 describes the
theoretical grounding of this research: deliberative agents and quali-
tative spatial reasoning. In section 3, we describe the integration that
enables BDI agents to use the qualitative spatial reasoning, selected
spatial capabilities, and the architecture of our approach. Section 4
describes the evaluation experiments and analyses the evaluation re-
sults. Related work is discussed in section 5. Section 6 gives a con-
clusion and an outlook on future research.

2 RESEARCH APPROACH

2.1 Deliberative agents

The paradigm of BDI architecture for software agents bases on the
concepts of beliefs, representing information about the agent’s cur-
rent environment; desires, representing the agent’s goals; and inten-
tions, representing the agent’s current focus, that leads to concrete
actions. The decision making process, what actions to perform in or-
der to achieve the goals, is based on the philosophical approach of
practical reasoning [2]. Practical reasoning consists of two activities,



deliberation and means-end reasoning. Deliberation meansthe deci-
sions on what goals an agent wants to achieve. Means-end reasoning
denotes the process of inferring how these goals can be achieved [26].

2.2 Qualitative spatial reasoning

Representing and analyzing spatial information is an essential prob-
lem in the context of the agents’ environment in multiagent systems
[23]. Often, spatial information is only available as qualitative infor-
mation or as a large amount of quantitative data. These circumstances
require an efficient analysis in qualitative form. One approach, the re-
gion connection calculus (RCC) for qualitative spatial reasoning was
developed by Randell, Cui and Cohn [19]. This calculus is based on
binary topological relations. The variant of this calculusused in this
paper, the RCC-8, is based on eight mutually exhaustive and pair-
wise disjoint relations, which describe the topological relations be-
tween two spatial regions. The base relations of the RCC-8 are DC
(disconnected), EC (externally connected), PO (partial overlap), EQ
(equal), TPP (part tangential proper), NTPP (non-tangential proper
part), TPP−1 (tangential proper part inverse) and NTPP−1 (non-
tangential proper part inverse). Reasoning is deduced fromthe com-
position (◦) of two base relationsR andS of two regionsx andy,
that is formalized as

∀x, y : x(R ◦ S)y ⇔ ∃z : (xRz ∧ zSy) (1)

The compositions of the eight base relations are shown as a com-
position table in [21]. The content of each cell determines the possi-
ble relations that results from the reasoning regarding therelation of
the respective column and line header. The composition table shows
that the reasoning results are not unique in the majority of cases.

3 QUALITATIVE SPATIAL REASONING IN BDI
AGENTS

3.1 Agent model

The objective of this approach is to enable BDI agents to moveau-
tonomously and collision-free in a spatial environment. The spatial
environment is based on real geographic data with regions that are
declared as movement areas and regions that are declared as obsta-
cles. Agents have two reciprocally affecting goals: (1) to move to the
agent’s target position, and (2) to avoid collisions with obstacles and
other agents. If an agent has reached its target position, a new target
position can be determined and the agent starts again to reach this
position. For the formal notation of this BDI agent pattern we use the
AgentSpeak(L) language [20]. The AgentSpeak(L) snippets below
are confined to the relevant parts.

The agent model has been developed on the condition that it is
accepted by Jason [1], a Java-based interpreter for an extended ver-
sion of AgentSpeak(L). Agents have the following set of beliefs.
The beliefagent id is used as an unique identification attribute of
an agent.speeddetermines the speed of an agent. An agent’s target
position is represented by the coordinatestarget position x andtar-
get position y, the agent’s current position bycurrent position x and
current position y. The position that is calculated for the next step
is represented bycalculatedposition x and calculatedpositiony.
The belief expansiondefines the expansion radius of an agent.
Thus, agents are not represented as single points but as polygons.
The belief perceptionfactor determines the factor in relation to
the agent’s expansion, that is used to define the perception area of
an agent. This region is represented by the beliefperceptionarea.

The beliefmovementarea represents the regions in which an agent
is able to move.obstaclearea represents the regions that are de-
clared as obstacles. The beliefrcc8 movementarea relation defines
the RCC-8 base relation ofperceptionarea and movementarea.
rcc8 obstaclearea relation defines the RCC-8 base relation ofper-
ceptionareaandobstaclearea. The beliefangledetermines the an-
gle that defines the direction of motion for an agent relatively to the
coordinate system.

/* Initial beliefs */
agent_id(ID).
speed(S).
target_position_x(TX).
target_position_y(TY).
current_position_x(CUX).
current_position_y(CUY).
calculated_position_x(CAX).
calculated_position_y(CAY).
expansion(E).
perception_factor(PF).
perception_area(PA).
movement_area(MA).
obstacle_area(OA).
rcc8_movement_area_relation(RMR).
rcc8_obstacle_area_relation(ROR).
angle(A).

The initial goal isstart. Thus when it starts running the event a plan
is triggered. This plan executes the functionregister at environment
that registers the agent as a part of the environment. The representa-
tion of an agent can be interpreted as a dynamic obstacle.start also
generates the goalmove.

/* Initial goals */
!start.

/* Plans */

+!start: true <-
register_at_environment(ID, CUX, CUY,
CAX, CAY, E, PF);
!move(PA, A).

The activities that are triggered bymoverepresent the beginning
of the process. The goalcalculatenew positionis generated.

+!move(PA, A): <-
!calculate_new_position(PA, A).

calculatenew positionexecutes the function with the same name.
This function calculates the new position for the next step by using
the angle and speed of an agent. The initial angle is determined by
the relation between the current position and the target position, so
that in the first instance the direct path is favored. The new calculated
position and the polygon that represents the agent are located in the
current perception area of the agent. After executing the calculation
function theavoid collisiongoal is generated.

+!calculate_new_position(PA, A): true <-
calculate_new_position(CUX, CUY, TX, TY,
S, E, A, CAX, CAY);
!avoid_collision(PA, A).



avoid collision executes three functions that enable the
agent to reason in the spatial context. The functionde-
tect spatial relations for movement calculates the RCC-8 base
relation between an agent’s perception area and the movement area.
detectspatial relations for obstaclescalculates the RCC-8 base re-
lation between an agent’s perception area and the obstacle area, e.g.,
obstacles and other agents. The functionreasonspatial composition
provides the underlying spatial reasoning; i.e. the function deter-
mines if the calculated position is in a region that is declared as an
agent’s movement area and if the position is not within an obstacle
or intersects with an obstacle. The polygon representing anagent
can be assumed, as described above, to be within the perception
area of this agent. This can be formally described by the RCC-8
base relation NTPP [21]. By means of the composition table ofthe
RCC-8 it can be reasoned about the possible RCC-8 base relation
between the calculated position of the agent, the movement area,
and the obstacle area. A collision can be assumed, if the reasoned
set of base relations with the movement area contains DC, EC,
TPP−1,PO or NTPP−1, and if the reasoned set of base relations with
the obstacle area contains TPP, TPP−1,PO, EQ, NTPP or NTPP−1.
In case of an existing collision the perception area is decreased, the
motion angle is modified, or both modifications are performed. This
is done in order to reach a collision-free event in the next iteration.
As final activityavoid collisiongenerates the goalmoveto position.

+!avoid_collision(PA, A): true <-
detect_spatial_relations_for_movement(
ID, PA, RMR, MA);
detect_spatial_relations_for_obstacle(
ID, PA, ROR, OA);
reason_spatial_composition(ID, RMR, ROR,
PA, MA, OA, CUX, CUY, CAX, CAY, TX, TY,
S, E, A, CA);
-+collision(CA);
!move_to_position(PA, MA, OA, A).

The following AgentSpeak(L) sections are triggered regarding a
belief change. If a result of the previous plan iscollision(0), the
agent beliefs-avoided(collision). If it is collision(1), the agent be-
liefs +avoided(collision).

+collision(0) : true <-
-avoided(collision).

+collision(1) : true <-
+avoided(collision).

The following plan is triggered if the motion to the calculated po-
sition is collision-free. The functionmoveto calculatedpositionex-
ecutes the actual motion; i.e. the current position of the agent is set
to the calculated position. The agent’s perception area is recalculated
according to the new position. The beliefat target position, contain-
ing the information if the agent has reached its target position, is set.
The goalschangetarget positionandmoveare generated in order to
enable a new iteration of motion.

+!move_to_position(PA, MA, OA, A):
avoided(collision) <-
move_to_calculated_position(ID, PA, MA,
OA, CUX, CUY, CAX, CAY, TX, TY, PF, E, A,
S, PR);
-+at_target_position(PR);
!change_target_position;
!move(PA, A).

If there is a potential collision with the calculated position,calcu-
late new positionhas to be executed again with the new perception
area and the new angle.

+!move_to_position(PA, MA, OA, A):
not avoided(collision) <-
!calculate_new_position(PA, A).

If the result of the previous plan isat target position(0), the agent
beliefs -reached(targetposition). If is it at target position(1), the
agent beliefs+reached(targetposition).

+at_target_position(0): true <-
-reached(target_position).

+at_target_position(1): true <-
+reached(target_position).

The following plan is triggered if the target position is reached.
Then, a new target position can be determined.

+!change_target_position:
reached(target_position) <-
change_target_position(TX, TY).

3.2 Spatial Capabilities

The environment the agents perceive is formed from the environment
and other agents. The environment is equal for all agents in the sys-
tem. In this paper, the environment is limited to a two-dimensional
space. The data structure is based on thematic layers, that are imple-
mented as database tables with geometric objects. Geometric objects
are defined analogous to the types of the Simple Feature Specifica-
tion for SQL of the Open GIS Consortium [6]. In this model, spatial
objects are limited to polygons and multi-polygons. All data is based
on real-world coordinates. With this vector representation of the en-
tities we obtain a continuous environment model. The thematically
separated polygon layers are defined explicitly as obstacleareas or
movement areas. For the individual layers, it is not relevant whether
the objects are static or dynamic. The decision process of the agents
is based on a snapshot of the current state of the perceived environ-
ment. The perception of the agents is limited to a defined region of
perception in the area of their site.

For the use of the RCC-8, regions are defined as polygons or multi-
polygons. Base relations are determined between polygons or multi-
polygons. To carry out the analysis, the topological features and spa-
tial analysis capabilities provided by the Simple Feature Specifica-
tion for SQL are used. A unique definition of the base relationbe-
tween two polygons or multi-polygons, as shown in Table 1, can be
determined by using these functions.

In detail, the relations between two geometric objectsA andB are
analyzed. The used topological features areContains, Touches, In-
tersects, Within, Equals, Disjoint, andOverlaps. Containschecks if
objectA spatially contains objectB. Touchesis true if the only points
in common between objectA and objectB lie in the union of the
boundaries ofA and B. Intersectschecks if two geometric objects
spatially intersect.Within is true if the objectA is completely inside
objectB. Equalsverifies if two geometric objects are spatially equal.
Disjoint checks if two objects have no common point.Overlapsis
true if two geometric objects share space, but are not completely con-
tained by each other. For an unique determination of the baserelation
the application of other spatial analysis function is necessary.Geom-
etryType(Intersection(A, B))returns the data type of the geometric



Table 1. Topological and spatial features for the determination of the base relation of the RCC-8

DC EC TPP TPP−1 PO EQ NTPP NTPP−1

Contains(A,B) false false false true false true false true
Touches(A,B) false true false false false false false false
Intersects(A,B) false true true true true true true true
Within(A,B) false false true false false true true false
Equals(A,B) false false false false false true false false
Disjoint(A,B) true false false false false false false false
Overlaps(A,B) false false false true true false false false
GeometryType( Geometry- Point/ Polygon Polygon Polygon Polygon Polygon Polygon
Intersection( A,B)) Collection Line

Touches( false true false true false true false false
Boundary(A),B)

Touches( false true true false false true false false
Boundary(B),A)

object, that represents the shared geometric object of two geometric
objectsAandB. Touches(Boundary(A), B)is true if the combinatorial
boundary of the objectA touches objectB.

To be interpreted as one of the base relations of the RCC-8, all
values of a column in Table 1 have to be fulfilled. In order to enable
the qualitative spatial reasoning, the composition table as shown in
[21] has to be implemented.

3.3 Architecture

This approach links spatial data, qualitative representation and rea-
soning, and reasoning in a multi-agent context. The architecture is
aligned with the fundamental principles of geographical information
systems (GIS). A GIS is an information system that stores, analyses
and displays spatial data from the real world [3]. Figure 2 shows an
UML component diagram of the system architecture of our approach.
The AgentEnvironment component contains a spatial database and
provides interfaces for interactions with the other components. The
spatial database is compliant to the OpenGIS standard [6] that sup-
ports storage and analysis of geometric objects. For the spatial rep-
resentation of the layers (AgentLayer, ObstacleLayer, Movement-
Layer) a database table exists following the thematically storage ap-
proach of geographic data.

The GISAgent component consists of the BDIAgent with its Spa-
tialRepresentation and SpatialReasoner described in the previous
section. The SpatialReasoner implements the RCC-8 composition
table and analyzes the spatial data from the AgentEnvironment us-
ing the spatial features of the OpenGISLibrary. The OpenGISLibrary
provides spatial analysis functions compliant to the OpenGIS stan-
dard [6]. The SpatialRepresentation artifact constitutesthe geometric
object representing an agent. The table AgentLayer of the AgentEn-
vironment is a composition of all SpatialRepresentation artifacts of
the participating agents.

The Visualization component displays the spatial data of the
AgentEnvironment divided into the underlying layer structure (Fig-
ure 3). An iterative update ensures the currentness of the visualization
of the dynamic environment.

4 EVALUATION

For the evaluation a multiagent system based on the following com-
ponents was implemented. For the implementation of the BDI agent

<< component >>

GISAgent

<< component >>

OpenGISLibrary

<< component >>

SpatialReasoner

<< component >>

BDIAgent

<< use >>

<< use >>

<< artifact >>

Spatial

Representation

<< component >>

Visualization

<< component >>

AgentEnviroment

<< component >>

SpatialDatabase

<< artifact , table >>

ObstacleAreaLayer

<< artifact , table >>

MovementAreaLayer

<< artifact , table >>

AgentLayer

cd: Architecture

<< use >>

1..*

<< use >>

<< use >>

Figure 2. UML component diagram of system architecture

system Jadex [16] is used. The spatial analysis functions are imple-
mented using the JTS Topological Suite [24] and PostGIS [17], a GIS
extension for the PostgreSQL database system [18]. The database
system also acts as a data representation layer of the environment
of the agent system as described in the section above. The environ-
ment of the agents and the associated visualization is developed with
a further development of the Hopix platform [10]. Figure 3 shows a
screenshot of the system.

To demonstrate the applicability and utility of the presented ap-
proach, we conduct three experiments of a simulated construction
site as a part of the service chain shown in Figure 1. The logistics
task of the autonomous resources (dumper) is to transport spoil au-
tomatically from one point of the construction side to another point
as an iterative action. In the experiments both positions are equal



Figure 3. Screenshot of spatial visualization

for all resources. The resources are represented by agents that sim-
ulate the autonomous, collision-free motion. The general setup for
all experiments is based on the same environment and parameters.
The boundary of the simulation area is a rectangle with a width of
approximately 600 meters and a length of approximately 400 me-
ters based on real geographic data. The boundary also definesthe
thematic layer, that determines the agents’ movement area.Another
polygon layer defines rectangles that determine the obstacles. Colli-
sions with these obstacles and with other agents have to be avoided.
The speed parameter is set to 4 meters per simulation interval, the
radius of a resource to 4 meters and the diameter of the agents’ per-
ception area to 24 meters. All agents have a start/current position
and a target position. The initial angle for movement is defined by
the angle between the start position and the target position.
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The scenario has been executed with 5, 10, and 20 agents in three
experiments. We measure the covered distance between the two pre-
defined target positions. The optimal path has a length of 688meters.
Each experiments is conducted with 50 routes. Figure 4 showsthe
mean of the covered distance for all agents in the experiments per
route number. The measurements confirm the expected result,that

the more agents participate in the simulation the greater the covered
distance gets. Table 2 gives an impression about the deviation be-
tween the optimal distance of the shortest path and the mean of all
covered distances in one experiment.

From the service chain perspective the requirements regarding the
adaptivity in the spatial dimension are fulfilled. The agentmodel en-
ables the logistic entities to react autonomously on a dynamic envi-
ronment, like dynamic obstacles. The transportation routes are cal-
culated adaptively regarding the dynamic parameters. Changing tar-
get positions lead to an immediate internal re-planning of the au-
tonomous logistic entities.

Table 2. Mean and deviation of experiments

5 agents 10 agents 20 agents

Mean distance [m] 743.7 803.1 965.0
Optimum [m] 688.0 688.0 688.0
Deviation[%] 7.5% 14.3% 28.7%

5 RELATED WORK

The integration of qualitative spatial reasoning mechanisms with
software agents in a similar approach is investigated in [22]. This ap-
proach utilize a different spatial calculus based on 23 baserelations
and make questions about perception in a real-world environment ex-
plicit. However, the authors remain on a high level of abstraction and
do not give details about the concrete model of their software agents.

In [27], Zimmermann and Freska enhance spatial reasoning bythe
concept of motion. They show how the static representation can be
interpreted as motion and how the conceptual neighborhood struc-
ture can be used. Though this approach is not suitable for dynamic
environments.

In [25], Wolter et. al. provide an approach that simulates con-
tinuous, collision-free movements of vessels in an open seasce-
nario. They formalize common traffic rules by theOPRAm calcu-
lus, which describes the relations between oriented points. Whenever
two or more vessels meet below a predefined distance, the system
calculates rule-compliant maneuvers for the involved vessels. How-
ever, details about the agent model are not given. The authors report
that the representation and reasoning processes occur at the level of
a control system with a bird’s eye view – not at the level of theindi-
vidual agents.

The problem class of motion planning problem addresses a sim-
ilar research question [12]. In particular the path planning problem
of multiple mobile robots in an environment provides relevant ap-
proaches. The existing techniques can be partitioned in three subcat-
egories: centralized, decoupled, and decentralized approaches. The
latter category have the closest relation to this contribution. In [13]
the problem of multi-robot decentralized motion planning is formu-
lated as a maze-searching problem. The main emphasis of [13]and
[4] is on the algorithmic issues of decentralized decision-making.
The authors of both contributions ignore real life uncertainties of in-
put information – they assume precise knowledge and perfectsens-
ing within a reactive approach. The authors of [8] and [5] also follow
a decentralized approach. Whenever a collision between robots in a
predefined perception area is anticipated, groups of robotsare formed
in order to solve the problem.

In [15], Müller et. al. present a navigation approach that gener-
ates human-like motion behavior for mobile robots in highlypop-



ulated environments. The approach detects and tracks people in the
surroundings of the robot and integrates this knowledge into the plan-
ning process based on the A* algorithm. The presented solution does
not base on software agents and is not suitable for the application in
a logistics scenario, because of missing communication features .

Automated guided vehicles (AGVs) are common for transporta-
tion tasks in intra-logistic scenarios such as container terminals.
Several contributions (e.g., [9], [7], and [14]) address this topic in
centralized approaches that require a control instance based on an
operation research approach. Furthermore the whole systemhas to
be equipped with localization systems or solutions based onwire-
guided tracks or optical surface markings.

6 CONCLUSION

We have shown the applicability of qualitative spatial reasoning with
topological information in BDI agents for autonomous, collision-free
motion in dynamic environments. In particular collision detection
profits from the spatial reasoning. The multiagent paradigmmatches
with the decentralized approach for logistic control systems. The
BDI architecture allows to make the agents’ decision process explicit
– based on beliefs, desires and intentions. The results of the evalua-
tion experiments show that the approach is applicable in simulation
environments based on real geographic data. The relevant spatial ca-
pabilities show how standard features of the OpenGIS standard can
be integrated into an agent environment, and how functions can be
mapped to the RCC-8 base relations.

From the motion planning perspective, future research has to in-
vestigate the suitability of different common strategies for calculat-
ing the agent’s new position for the proposed agent model. The sup-
port of further multiagent technologies like agent communication,
agent interaction protocols and coalition formation can decrease the
mean deviation measured in the evaluation experiments. From the
logistics perspective, we have to investigate further how agent tech-
nologies, especially the BDI paradigm, can support the decentral-
ized approach of logistic control systems along the complete supply
chain, particularly in the spatial dimension. We also have to investi-
gate how further spatial cognition and spatial analysis functions can
be employed for software agents in the logistic domain. In order to
refine the evaluation, the effectiveness and efficiency of the model
has to be proven. Further, the model has to be evaluated against ex-
isting (non-)qualitative approaches.

ACKNOWLEDGEMENTS

The work presented in this paper was partly funded by the German
Federal Ministry of Education and Research under the project Geo-
log (BMBF 01IS09019A).

REFERENCES
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[14] R. H. Möhring, E. Köhler, E. Gawrilow, and B. Stenzel,‘Conflict-free
Real-time AGV Routing’, inOR, eds., H. A. Fleuren, D. den Hertog,
and P. M. Kort, pp. 18–24, (2004).

[15] J. Müller, C. Stachniss, K. O. Arras, and W. Burgard, ‘Socially inspired
motion planning for mobile robots in populated environments’, in In-
ternational Conference on Cognitive Systems (CogSys’08), Karlsruhe,
Germany, (2008).

[16] A. Pokahr, L. Braubach, and Lamersdorf.W., ‘Jadex: Implementing a
BDI-Infrastructure for JADE Agents’, inEXP - In Search of Innovation
(Special Issue on JADE), pp. 76–85, Turin, (2003).

[17] PostGIS. Website. Available online at http://postgis.refractions.net vis-
ited on April 8th 2010.

[18] PostgreSQL. Website. Available online at http://postgresql.org visited
on April 8th 2010.

[19] D. A. Randell, Z. Cui, and A. G.. Cohn, ‘A spatial logic based on
regions and connection’, inProc. 3rd International Conference on
Knowledge Representation and Reasoning, pp. 165–176, Los Altos,
(1992).

[20] A.S. Rao, ‘Agentspeak(L): BDI agents speak out in a logical com-
putable language’, inProceedings of Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, pp. 42–55,
Eindhoven, (1996).

[21] J. Renz and B. Nebel, ‘Spatial reasoning with topological informa-
tion’, in Spatial Cognition, eds., C. Freksa, C. Habel, and K. F. Wen-
der, volume 1404 ofLecture Notes in Computer Science, pp. 351–372.
Springer, (1998).

[22] A. Schuldt and B. Gottfried, ‘Spatiotemporal cooperation at the geo-
graphic scale’, inInterdisciplinary College (IK 2008), eds., B. Loos
and V. Micelli, p. 32, (2008).
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