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Abstract.
agents models in multiagent systems. In the spatial cgontbgt
agents’ knowledge about their environment is often unaerid/e

focus on the problem of autonomous, collision-free motibagents
on base of uncertain knowledge in transport logistics. phablem is
addressed from a qualitative spatial reasoning persgedive con-
tribution of this paper is an agent model that integrates &iicepts
and spatial analysis capabilities. The approach is evaduay means
of multiagent simulation in a scenario from the transpagidtic do-

main.

1 INTRODUCTION

The trends and changes in logistics lead to decentralizeagphes
of control systems for logistic processes that reduce theptexity
of central systems [11]. The former standard approach diihétci-
sions of local entities to a minor scope of action. The deedined
approach addresses aspects like heterogeneity, adgapdivit reac-
tivity to dynamically changing external influences. Thusdl enti-
ties which follow global goals of central interest with thepabilities
of dynamic decision-making on an operational level are irequA
well-known example of this approach is distributed consibhuto-
mated container terminals. In this paper, we consider amows lo-
gistic entities in individual, closed, dynamic environrteelike con-
struction sides, airports, and ports. Figure 1 shows a&emhain
model example of a construction side. The individual rezmints
of the customer determine the requirements on the actoichveloin-
tribute to the provision of services. In order to achieveghtgrade
of individualization of the rendered services of the logsentities,
the whole service chain and thus the single logistic estiteed to be
equipped with the feature of adaptivity. Especially in tpat&al di-
mension, the logistic entities have to react adaptivelyymrachically
changing requirements, like changing transportatioretgpgsitions
and transportation routes, and on the dynamic environment.

Logistics is mainly characterized by interacting logistipro-
cesses. Therefore, effective logistics requires a holagproach to
take inter- and intra-processual dependencies into atcbailures
of local resources can affect the execution of logisticscpsses
that use these resources. Due to inter-processual depeesi¢his
can also affect further processes. Thus, low-level problesach as
collision-free motion, are relevant for logistic problefnsm a high-
level perspective along the whole service chain.

In order to address the listed aspects, software agentsadeas
representatives of logistic entities that act on their Hefiae paper
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The paper investigates belief-desire-intention (BDI) investigates goal-oriented belief-desire-intention (B&yents mod-

els in multiagent systems. In the spatial context, the ajénbwl-

edge about their environment is often uncertain. Agentsaabase
their decisions on static information because of the dyoami their
environment. In this paper, we consider the problem of artaus,
collision-free motion of agents on base of uncertain kndgéein
the context of transport logistics. BDI agents are enriclét spa-
tial analysis features. For this purpose, qualitativeiapagasoning
based on the RCC-8 calculus provides suitable concepts Y¥8]
concentrate on the agent model itself. Sensors and robeyiahdl-
ities, that would be required for a real-world scenario, rave con-
sidered. We integrate standard features of the OpenGIl8atA(6]

in an agent environment, and map the functions to the RCCs8 ba

relations. The environment is represented as thematicdéga., ob-
stacles). The presented approach is evaluated by meandtizfgant
simulation in a scenario from the transport logistic domain
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Figurel. Service chain model example of a construction side

The remainder of this paper is as follows. Section 2 dessiibe
theoretical grounding of this research: deliberative sgand quali-
tative spatial reasoning. In section 3, we describe thgrat®n that
enables BDI agents to use the qualitative spatial reaspagigcted
spatial capabilities, and the architecture of our appro8ettion 4
describes the evaluation experiments and analyses theateal re-
sults. Related work is discussed in section 5. Section Ggiveon-
clusion and an outlook on future research.

2 RESEARCH APPROACH
2.1 Ddiberative agents

The paradigm of BDI architecture for software agents basethe
concepts of beliefs, representing information about trentg cur-
rent environment; desires, representing the agent’s gaatsinten-
tions, representing the agent’s current focus, that lead®mcrete
actions. The decision making process, what actions to pariioor-
der to achieve the goals, is based on the philosophical approf
practical reasoning [2]. Practical reasoning consistsvofdctivities,



deliberation and means-end reasoning. Deliberation mibandeci-
sions on what goals an agent wants to achieve. Means-erahirgs
denotes the process of inferring how these goals can bevacH26].

2.2 Qualitative spatial reasoning

Representing and analyzing spatial information is an esdqmob-
lem in the context of the agents’ environment in multiagsgistems
[23]. Often, spatial information is only available as qtegive infor-
mation or as a large amount of quantitative data. Theserogtances
require an efficient analysis in qualitative form. One appig the re-
gion connection calculus (RCC) for qualitative spatiab@@ng was
developed by Randell, Cui and Cohn [19]. This calculus ibam
binary topological relations. The variant of this calculised in this
paper, the RCC-8, is based on eight mutually exhaustive aie p
wise disjoint relations, which describe the topologicdatiens be-
tween two spatial regions. The base relations of the RCGD&
(disconnected), EC (externally connected), PO (partiatlap), EQ
(equal), TPP (part tangential proper), NTPP (non-tangeptioper
part), TPP! (tangential proper part inverse) and NTPP(non-
tangential proper part inverse). Reasoning is deduced fihencom-
position ) of two base relation®? and .S of two regionsz andy,
that is formalized as

Vz,y:xz(RoS)y < 3z: (xRz A 2Sy) 1)

The compositions of the eight base relations are shown ama co
position table in [21]. The content of each cell determiresgossi-
ble relations that results from the reasoning regardingelfaion of
the respective column and line header. The compositioe ttbws
that the reasoning results are not unique in the majorityasés.

3 QUALITATIVE SPATIAL REASONING IN BDI
AGENTS

3.1 Agent model

The objective of this approach is to enable BDI agents to name
tonomously and collision-free in a spatial environmente Fpatial
environment is based on real geographic data with regicaisatte
declared as movement areas and regions that are declarédtas o
cles. Agents have two reciprocally affecting goals: (1) mveto the
agent’s target position, and (2) to avoid collisions witlstizles and
other agents. If an agent has reached its target positioewdarget
position can be determined and the agent starts again tb thic
position. For the formal notation of this BDI agent patterause the
AgentSpeak(L) language [20]. The AgentSpeak(L) snippetevip
are confined to the relevant parts.

The beliefmovemenarearepresents the regions in which an agent
is able to moveobstaclearea represents the regions that are de-
clared as obstacles. The belieE8_ movementrea relation defines
the RCC-8 base relation gferceptionarea and movementrea
rcc8.obstaclearea relation defines the RCC-8 base relationpr-
ceptionareaandobstaclearea The beliefangledetermines the an-
gle that defines the direction of motion for an agent relgtive the
coordinate system.

[+ Initial beliefs */
agent _id(1D).
speed(S).

target _position_x(TX).
target_position_y(TY).

current _position_x(CUX).

current _position_y(CUY).

cal cul at ed_posi ti on_x( CAX).

cal cul at ed_posi ti on_y( CAY).
expansi on(E) .
perception_factor(PF).
perception_area(PA).

nmovemnent _ar ea( MA) .

obstacl e_area(Qh).
rcc8_novenent _area_rel ati on( RWVR).
rcc8_obstacl e_area_rel ati on(ROR).
angl e(A).

The initial goal isstart. Thus when it starts running the event a plan
is triggered. This plan executes the functiegisterat environment
that registers the agent as a part of the environment. Thegepta-
tion of an agent can be interpreted as a dynamic obststeld.also
generates the goaiove

[+ Initial goals */
I'start.

[+ Plans =/
+l'start: true <-

register_at_environment (1D, CUX, CUY,
CAX, CAY, E, PF);
Imove(PA, A).

The activities that are triggered logoverepresent the beginning
of the process. The goahlculate new positionis generated.

+!move(PA, A): <-
I cal cul ate_new_position(PA, A).

The agent model has been developed on the condition that it is

accepted by Jason [1], a Java-based interpreter for andederer-
sion of AgentSpeak(L). Agents have the following set of disli

calculatenew positionexecutes the function with the same name.
This function calculates the new position for the next stgusing

The beliefagentid is used as an unique identification attribute of the angle and speed of an agent. The initial angle is detextiy
an agentspeeddetermines the speed of an agent. An agent's targefhe relation between the current position and the targetippsso

position is represented by the coordinat@get positionx andtar-
getpositiony, the agent’s current position fryrrent positionx and

that in the first instance the direct path is favored. The redeutated
position and the polygon that represents the agent areclb@atthe

currentpositiony. The position that is calculated for the next step cyrrent perception area of the agent. After executing theutztion

is represented byalculatedpositionx and calculatedpositiony.

The belief expansiondefines the expansion radius of an agent.

Thus, agents are not represented as single points but agopsly
The belief perceptionfactor determines the factor in relation to
the agent’s expansion, that is used to define the perceptéeanai
an agent. This region is represented by the bglerteptionarea

function theavoid.collision goal is generated.

+! cal cul at e_new _position(PA, A): true <-
cal cul ate_new _position(CUX, CUY, TX, TY,
S, E, A CAX, CAY);
lavoi d_col Ii si on(PA, A).



avoid.collision executes three functions that enable the

agent to reason in the spatial context. The functide-
tectspatialLrelationsfor_-movement calculates the RCC-8 base
relation between an agent’s perception area and the moveram
detectspatial relationsfor_obstaclescalculates the RCC-8 base re-
lation between an agent’s perception area and the obstaaeag.,
obstacles and other agents. The functessonspatial composition
provides the underlying spatial reasoning; i.e. the fumctileter-
mines if the calculated position is in a region that is demdaas an
agent’s movement area and if the position is not within artaaibs
or intersects with an obstacle. The polygon representingggemnt

If there is a potential collision with the calculated pasiticalcu-
late_new positionhas to be executed again with the new perception
area and the new angle.

+Inove_to_position(PA, M\ OA A):
not avoi ded(collision) <-
I cal cul ate_new_position(PA, A).

If the result of the previous plan & target position(0) the agent
beliefs -reached(targefposition) If is it attargetposition(1) the
agent beliefsrreached(targetposition)

can be assumed, as described above, to be within the pemepti+at _t arget_position(0): true <-

area of this agent. This can be formally described by the BCC-

base relation NTPP [21]. By means of the composition tablthef

-reached(target_position).

RCC-8 it can be reasoned about the possible RCC-8 baseorelati +at _t ar get _position(1): true <-

between the calculated position of the agent, the movemesat, a
and the obstacle area. A collision can be assumed, if th@meds

+reached(target_position).

set of base relations with the movement area contains DC, EC, 1he following plan is triggered if the target position is cbad.
TPP~!,PO or NTPP!, and if the reasoned set of base relations with 1 €N & new target position can be determined.

the obstacle area contains TPP, TPPO, EQ, NTPP or NTPP.
In case of an existing collision the perception area is d=mé, the
motion angle is modified, or both modifications are perfornigds
is done in order to reach a collision-free event in the neation.
As final activityavoid_collision generates the goatoveto_position

+lavoid_col lision(PA A): true <-
detect _spatial _rel ations_for_novenent (
ID, PA, RVR M);
detect _spatial _rel ations_for_obstacl e(
ID, PA, ROR A);
reason_spatial _conposition(ID, RVR ROR
PA, MA, QA CUX, CUY, CAX, CAY, TX TY,
S, EE A CA;
-+col l'i si on(CA);
I'move_to_position(PA M\ QA A).

The following AgentSpeak(L) sections are triggered reuay
belief change. If a result of the previous plandsllision(0), the
agent beliefsavoided(collision) If it is collision(1), the agent be-
liefs +avoided(collision)

+col l'i si on(0) true <-
-avoi ded(col l'ision).

+col l'i sion(1) true <-
+avoi ded(col |i sion).

The following plan is triggered if the motion to the calcedtpo-
sition is collision-free. The functiomoveto_calculatedpositionex-
ecutes the actual motion; i.e. the current position of trentags set
to the calculated position. The agent’s perception arezcalculated
according to the new position. The bel@ftarget position contain-
ing the information if the agent has reached its target osits set.
The goalschangetarget positionandmoveare generated in order to
enable a new iteration of motion.

+nove_to_position(PA, M\ OA A):
avoi ded(col l'i sion) <-
nmove_t o_cal cul ated_position(1 D, PA MA
QA, CUX, CUY, CAX, CAY, TX TY, PF, E A
S, PR;
-+at_target_position(PR);
I change_target _position;
Imove(PA, A).

+! change_t arget _position:
reached(target _position) <-
change_target _position(TX, TY).

3.2 Spatial Capabilities

The environment the agents perceive is formed from the emrient
and other agents. The environment is equal for all agentseisys-
tem. In this paper, the environment is limited to a two-disienal
space. The data structure is based on thematic layers réhizhple-
mented as database tables with geometric objects. Georobjects
are defined analogous to the types of the Simple Featuref@peci
tion for SQL of the Open GIS Consortium [6]. In this model, tipla
objects are limited to polygons and multi-polygons. Allalat based
on real-world coordinates. With this vector representatibthe en-
tities we obtain a continuous environment model. The thaally
separated polygon layers are defined explicitly as obstaelas or
movement areas. For the individual layers, it is not releverether
the objects are static or dynamic. The decision processedddients
is based on a shapshot of the current state of the perceivadren
ment. The perception of the agents is limited to a definedregf
perception in the area of their site.

For the use of the RCC-8, regions are defined as polygons &r mul
polygons. Base relations are determined between polygomsiii-
polygons. To carry out the analysis, the topological fesgand spa-
tial analysis capabilities provided by the Simple Featypecica-
tion for SQL are used. A unique definition of the base relatien
tween two polygons or multi-polygons, as shown in Table b, loa
determined by using these functions.

In detall, the relations between two geometric objéctndB are
analyzed. The used topological features @mtains TouchesIn-
tersects Within, Equals Disjoint, andOverlaps Containschecks if
objectA spatially contains obje®. Touchess true if the only points
in common between obje@ and objectB lie in the union of the
boundaries ofA andB. Intersectschecks if two geometric objects
spatially intersectWithin is true if the objeci is completely inside
objectB. Equalsverifies if two geometric objects are spatially equal.
Disjoint checks if two objects have no common poiBverlapsis
true if two geometric objects share space, but are not cagipleon-
tained by each other. For an unique determination of the tedaton
the application of other spatial analysis function is neaesGeom-
etryType(Intersection(A, B)eturns the data type of the geometric



Tablel. Topological and spatial features for the determinatiorhefliase relation of the RCC-8
DC EC TPP TPP! PO EQ NTPP  NTPP!
Contains(A,B) false false false true false true false true
Touches(A,B) false true false false false false false false
Intersects(A,B) false true true true true true true true
Within(A,B) false false true false false true true false
Equals(A,B) false false false false false true false false
Disjoint(A,B) true false false false false false false éals
Overlaps(A,B) false false false true true false false false
GeometryType( Geometry- Point/ Polygon Polygon Polygon lyggm Polygon  Polygon
Intersection( A,B))  Collection  Line
Touches( false true false true false true false false
Boundary(A),B)
Touches( false true true false false true false false
Boundary(B),A)
ob!ect, that represents the shared geometric pbject of eymgtr{c —
objectsA andB. Touches(Boundary(A), B true if the combinatorial —
boundary of the objed touches objecB.
To be interpreted as one of the base relations of the RCO-8, a Vionmetion €
values of a column in Table 1 have to be fulfilled. In order tatda
the qualitative spatial reasoning, the composition tablsteown in
[21] has to be implemented. AQ\
<< component >> £] << component >> £]
AgentEnviroment GISAgent
3.3 Architecture pov——
This approach links spatial data, qualitative represtmtaind rea- SpatialDatabase o B e &
soning, and reasoning in a multi-agent context. The arctite is <<antfact, table >>[= [ 14| | Representation [<
. . . . . . AgentlLayer
aligned with the fundamental principles of geographicédimation
systems (GIS). A GIS is an information system that storealyaas Y ]
and displays spatial data from the real world [3]. Figure @ghan e T O [ e e
UML component diagram of the system architecture of our agqn. ObstacleAreaLayer . '
The AgentEnvironment component contains a spatial databad use s l
provides interfaces for interactions with the other congis. The N A g;;‘;{;ﬁ;’gz;;;@ g,f::gfsnfﬁ;;y@
spatial database is compliant to the OpenGIS standard §6Jstip- <<artifact, wable >0 (V|| 1R 5
ports storage and analysis of geometric objects. For thiaspeap- MovementAreaLayer
resentation of the layers (AgentLayer, ObstacleLayer, dioent-
Layer) a database table exists following the thematicatiyagie ap-
proach of geographic data.

The GISAgent component consists of the BDIAgent with its-Spa
tialRepresentation and SpatialReasoner described in rindgops
section. The SpatialReasoner implements the RCC-8 cotigposi
table and analyzes the spatial data from the AgentEnvirohms-
ing the spatial features of the OpenGISLibrary. The Opeh@®iary
provides spatial analysis functions compliant to the Ofdén&an-
dard [6]. The SpatialRepresentation artifact constittitegeometric
object representing an agent. The table AgentLayer of threnfkn-
vironment is a composition of all SpatialRepresentatidifaats of
the participating agents.

The Visualization component displays the spatial data af th
AgentEnvironment divided into the underlying layer sturet (Fig-
ure 3). An iterative update ensures the currentness of sualzation
of the dynamic environment.

4 EVALUATION

For the evaluation a multiagent system based on the follpwom-
ponents was implemented. For the implementation of the Bjghta

Figure2. UML component diagram of system architecture

system Jadex [16] is used. The spatial analysis functioménaple-
mented using the JTS Topological Suite [24] and PostGIS HLE|IS
extension for the PostgreSQL database system [18]. Théakxa
system also acts as a data representation layer of the eméra
of the agent system as described in the section above. Tl®renv
ment of the agents and the associated visualization is aj@eelwith
a further development of the Hopix platform [10]. Figure sk a
screenshot of the system.

To demonstrate the applicability and utility of the presehap-
proach, we conduct three experiments of a simulated cartitru
site as a part of the service chain shown in Figure 1. Thetiogis
task of the autonomous resources (dumper) is to transpoiftap
tomatically from one point of the construction side to amotpoint
as an iterative action. In the experiments both positioesesual
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Figure3. Screenshot of spatial visualization

for all resources. The resources are represented by adetsim-
ulate the autonomous, collision-free motion. The genezals for
all experiments is based on the same environment and paramet
The boundary of the simulation area is a rectangle with atwidt
approximately 600 meters and a length of approximately 4@0 m
ters based on real geographic data. The boundary also ddfiaes
thematic layer, that determines the agents’ movement arezther
polygon layer defines rectangles that determine the olestaClolli-
sions with these obstacles and with other agents have todigeal
The speed parameter is set to 4 meters per simulation ihtéinea
radius of a resource to 4 meters and the diameter of the agents
ception area to 24 meters. All agents have a start/curresitio
and a target position. The initial angle for movement is defiby
the angle between the start position and the target position

Evaluation Experiments
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Figure4. Analyze of mean passed distances of agents in evaluation
experiments

the more agents participate in the simulation the greatectvered
distance gets. Table 2 gives an impression about the daviag-
tween the optimal distance of the shortest path and the miealh o
covered distances in one experiment.

From the service chain perspective the requirements rieggitoe
adaptivity in the spatial dimension are fulfilled. The agewidel en-
ables the logistic entities to react autonomously on a dynamvi-
ronment, like dynamic obstacles. The transportation mate cal-
culated adaptively regarding the dynamic parameters. @hgriar-
get positions lead to an immediate internal re-planninghef au-
tonomous logistic entities.

Table2. Mean and deviation of experiments

5agents 10agents 20 agents
Mean distance [m] 743.7 803.1 965.0
Optimum [m] 688.0 688.0 688.0
Deviation[%] 7.5% 14.3% 28.7%

5 RELATED WORK

The integration of qualitative spatial reasoning mecharisvith
software agents in a similar approach is investigated ih [R#s ap-
proach utilize a different spatial calculus based on 23 bals¢ions
and make questions about perception in a real-world erwier ex-
plicit. However, the authors remain on a high level of alitioa and
do not give details about the concrete model of their softvegients.

In [27], Zimmermann and Freska enhance spatial reasonitigeby
concept of motion. They show how the static representationbe
interpreted as motion and how the conceptual neighborhtrad-s
ture can be used. Though this approach is not suitable faardim
environments.

In [25], Wolter et. al. provide an approach that simulates-co
tinuous, collision-free movements of vessels in an openssea
nario. They formalize common traffic rules by tts?RA,,, calcu-
lus, which describes the relations between oriented paivitenever
two or more vessels meet below a predefined distance, thensyst
calculates rule-compliant maneuvers for the involved etsss{ow-
ever, details about the agent model are not given. The aithport
that the representation and reasoning processes occu lat/g of
a control system with a bird’s eye view — not at the level ofitioi-
vidual agents.

The problem class of motion planning problem addresses a sim
ilar research question [12]. In particular the path plagrmoblem
of multiple mobile robots in an environment provides relavap-
proaches. The existing techniques can be partitioned @z tbubcat-
egories: centralized, decoupled, and decentralized appes. The
latter category have the closest relation to this contigiputin [13]
the problem of multi-robot decentralized motion planniadgarmu-
lated as a maze-searching problem. The main emphasis o&fitB]
[4] is on the algorithmic issues of decentralized decisitaking.
The authors of both contributions ignore real life unceatias of in-
put information — they assume precise knowledge and pestats-

The scenario has been executed with 5, 10, and 20 agente@ thring within a reactive approach. The authors of [8] and [5 d¢slow

experiments. We measure the covered distance betweendhgaw
defined target positions. The optimal path has a length oht&grs.
Each experiments is conducted with 50 routes. Figure 4 sltiogvs
mean of the covered distance for all agents in the expersnaeit
route number. The measurements confirm the expected rdsatit,

a decentralized approach. Whenever a collision betweentgab a
predefined perception area is anticipated, groups of resetormed
in order to solve the problem.

In [15], Miller et. al. present a navigation approach themey-
ates human-like motion behavior for mobile robots in highbp-



ulated environments. The approach detects and tracksepeotie [6]
surroundings of the robot and integrates this knowledgetir plan-

ning process based on the A* algorithm. The presented saldties 7]
not base on software agents and is not suitable for the apiplicin

a logistics scenario, because of missing communicatictutfes . [8]

Automated guided vehicles (AGVs) are common for transporta

tion tasks in intra-logistic scenarios such as containemitels.
Several contributions (e.g., [9], [7], and [14]) addresis tiopic in 9]
centralized approaches that require a control instancedbas an
operation research approach. Furthermore the whole syshsnto

be equipped with localization systems or solutions basewvioe [20]
guided tracks or optical surface markings.

[11]
6 CONCLUSION

We have shown the applicability of qualitative spatial mrasg with
topological information in BDI agents for autonomous, isatin-free
motion in dynamic environments. In particular collisiontefgion 13
profits from the spatial reasoning. The multiagent paradigaiches
with the decentralized approach for logistic control syste The
BDI architecture allows to make the agents’ decision preeaglicit
— based on beliefs, desires and intentions. The resultsechthlua-
tion experiments show that the approach is applicable inlgition  [15]
environments based on real geographic data. The relevatitlspa-
pabilities show how standard features of the OpenGIS stdnchn
be integrated into an agent environment, and how functiamsbe
mapped to the RCC-8 base relations.

From the motion planning perspective, future research dvas-t
vestigate the suitability of different common strategiesdalculat-  [17]
ing the agent’s new position for the proposed agent moded.STip-
port of further multiagent technologies like agent comnoation,
agent interaction protocols and coalition formation cacrease the [19]
mean deviation measured in the evaluation experimentsn fne
logistics perspective, we have to investigate further hgenatech-
nologies, especially the BDI paradigm, can support the rteale

[12]

[14]

[16]

(18]

20
ized approach of logistic control systems along the coregapply (0]
chain, particularly in the spatial dimension. We also havimvesti-
gate how further spatial cognition and spatial analysigfions can
be employed for software agents in the logistic domain. breoto (21]
refine the evaluation, the effectiveness and efficiency efrttodel
has to be proven. Further, the model has to be evaluatedsagain
isting (non-)qualitative approaches. [22]
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