[BibTeX] [RIS]
Implementation of the Radiation Characteristics of Musical Instruments in Wave Field Synthesis Application
Type of publication: Phdthesis
Citation: ziemerdisswfs
Publication status: Published
Type: Ph.D. Thesis
Year: 2015
Month: May
School: University of Hamburg
Address: Hamburg
Note: 1,0
URL: http://ediss.sub.uni-hamburg.d...
DOI: 10.13140/RG.2.1.1997.9769
Abstract: In this thesis a method to implement the radiation characteristics of musical instruments in wave field synthesis systems is developed. It is applied and tested in two loudspeaker systems. Because the loudspeaker systems have a comparably low number of loudspeakers the wave field is synthesized at discrete listening positions by solving a linear equation system. Thus, for every constellation of listening and source position all loudspeakers can be used for the synthesis. The calculations are done in spectral domain, denying sound propagation velocity at first. This approach causes artefacts in the loudspeaker signals and synthesis errors in the listening area which are compensated by means of psychoacoustic methods. With these methods the aliasing frequency is determined by the extent of the listening area whereas in other wave field synthesis systems it is determined by the distance of adjacent loudspeakers. Musical instruments are simplified as complex point sources to gain, store and propagate their radiation characteristics. This method is the basis of the newly developed “Radiation Method” which improves the matrix conditioning of the equation system and the precision of the wave field synthesis by implementing the radiation characteristics of the driven loudspeakers. In this work, the “Minimum Energy Method” — originally developed for acoustic holography — is applied for matters of wave field synthesis for the first time. It guarantees a robust solution and creates softer loudspeaker driving signals than the Radiation Method but yields a worse approximation of the wave field beyond the discrete listening positions. Psychoacoustic considerations allow for a successful wave field synthesis: Integration times of the auditory system determine the spatial dimensions in which the wave field synthesis approach works despite different arrival times and directions of wave fronts. By separating the spectrum into frequency bands of the critical band width, masking effects are utilized to reduce the amount of calculations with hardly audible consequences. By applying the “Precedence Fade”, the precedence effect is used to manipulate the perceived source position and improve the reproduction of initial transients of notes. Based on Auditory Scene Analysis principles, “Fading Based Panning” creates precise phantom source positions between the actual loudspeaker positions. Physical measurements, simulations and listening tests prove evidence for the introduced methods and reveal their precision. Furthermore, results of the listening tests show that the perceived spaciousness of instrumental sound not necessarily goes along with distinctness of localization. The introduced methods are compatible to conventional multi channel audio systems as well as other wave field synthesis applications.
Keywords: auditory scene analysis, instrument acoustics, psychoacoustic wave field synthesis, Room Acoustics, spatial hearing
Authors Ziemer, Tim
Attachments
    Notes
      Topics