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1	 Spatial	problems	and	physical	space	
A	 spatial	 problem	 is	 (1)	 a	 question	 about	 a	 given	 spatial	 configuration	 (of	 arbitrary	
physical	entities)	 that	needs	 to	be	answered	(e.g.	 is	there	wine	in	the	glass?)	or	 (2)	 the	
challenge	 to	 construct	 a	 spatial	 configuration	 with	 certain	 properties	 from	 a	 given	
spatial	 configuration	 (e.g.	add	two	matchsticks	to	the	given	configuration	to	obtain	 four	
squares)	(Bertel,	2010).	By	spatial	configurations	we	mean	arrangements	of	entities	 in	
1-,	 2-,	 or	 3-dimensional	 physical	 space,	 where	 physical	 space	 is	 commonsensically	
observable	 Euclidean	 space	 and	 motion,	 rather	 than	 relativistic	 space-time.	 Physical	
space	 is	 contrasted	 here	 to	 abstract	 space	 of	 arbitrary	 dimensionality.	 Physical	 space	
affords	 certain	 actions,	 like	 (i)	 rotation	 (circular	 motion	 of	 objects	 around	 a	 given	
location);	 (ii)	 motion	 from	 one	 location	 to	 another;	 (iii)	 deformation	 of	 objects;	 (iv)	
separation	 of	 objects	 into	 parts;	 (v)	 aggregation	 of	 objects;	 and	 (vi)	 combinations,	 i.e.	
rotation	around	a	changing	location.		

A	special	feature	of	commonsense	physical	space	(CPS)	is	that	operations	such	as	motion	
are	 severely	 constrained	 and	 comply	 with	 rigid	 rules	 we	 cannot	 change	 whereas	 in	
abstract	 spaces	 we	 are	 free	 to	 make	 up	 arbitrary	 rules	 about	 which	 operations	 are	
possible	and	which	are	not.	For	example,	in	abstract	representations	of	space	(AbsRS)	we	
could	 allow	 a	 ‘jump’	 operation	 that	 moves	 an	 entity	 directly	 from	 one	 location	 to	 a	
remote	 location	 (as	 in	 some	board	 games).	 In	 CPS	 this	 is	 not	 possible:	 objects	 always	
first	move	to	neighboring	locations	and	then	to	a	neighbor	of	that	 location,	etc.,	before	
they	 can	 reach	a	 remote	 location1.	This	has	 implications	on	 the	 trajectories	 (including	
the	time	course)	of	motion.		

As	a	second	example,	in	abstract	space	we	could	come	up	with	an	operation	that	allows	
an	entity	to	be	in	two	places	at	the	same	time.	In	CPS	this	is	not	possible	because	of	the	
nature	of	physical	space	and	matter.	This	has	implications	on	unique	identity,	presence	
in	 a	 space,	 containment	 within	 it	 and	 access	 to	 it.	 In	 abstract	 space,	 the	 types	 of	
operations	possible	are	defined	by	the	agent	conceiving	the	abstract	space,	while	in	CPS	
they	 depend	 on	 the	 nature	 of	 physical	 space	 itself.	 The	 types	 of	 actions	 that	 can	 be	
performed	 in	 CPS	 define	 the	 characteristic	 structure	 of	 physical	 space	 (Freksa,	 1997)	
that	is	exploited	by	Euclidean	geometry	and	vice	versa	(Euclid,	300	BC/1956).	

In	this	chapter,	we	discuss	(1)	how	cognitive	agents	such	as	humans,	other	animals,	or	
robots	can	use	concrete	CPS	and	AbsRS	for	solving	spatial	problems	and	(2)	what	are	the	
relative	merits	of	both	approaches.	We	describe	how	the	approaches	can	be	combined.	
We	 look	at	 the	roles	of	spatial	configurations	and	of	cognitive	agents	 in	 the	process	of	
spatial	 problem	 solving	 from	 a	 cognitive	 architecture	 perspective.	 In	 particular,	 we	
discuss	(a)	the	role	of	the	structures	of	space	and	time;	(b)	the	role	of	conceptualizations	

																																																								
1	This	holds	for	arbitrary	granularities	of	neighborhoods.	
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and	 representations	 of	 these	 structures;	 and	 (c)	 the	 role	 of	 knowledge	 about	 these	
structures.	
The	chapter	is	organized	as	follows.	In	section	1	we	describe	how	and	why	geographic	
maps	 help	 us	 solve	 spatial	 problems	 in	 the	 real	world	 (1.1);	 then	 point	 out	 cognitive	
difficulties	of	communicating	about	space	and	spatial	representations	(1.2);	and	offer	a	
wayfinding	example	that	illustrates	how	various	levels	of	abstraction	can	be	involved	in	
spatial	problem	solving	and	reasoning.	A	fresh	look	at	spatial	problem	solving	is	taken	in	
section	2,	where	we	describe	components	of	problem	solving	(2.1);	put	the	components	
together	 (2.2);	 and	 discuss	 the	 difference	 between	 solving	 spatial	 problems	 and	
understanding	problem	solving	processes	(2.3).	On	the	basis	of	this	discussion,	section	3	
proposes	 mild	 abstraction	 as	 a	 third	 way	 between	 direct	 spatial	 and	 indirect	 formal	
problem	 solving,	 discusses	 how	much	 abstraction	 is	 useful	 (3.1);	 illustrates	 how	mild	
abstraction	 is	 performed	 in	 geographic	 maps	 (3.2);	 moves	 the	 discussion	 of	 mild	
abstraction	 from	 geographic	 space	 to	 other	 spatial	 domains	 (3.3);	 and	 discusses	
strategic	 aspects	 of	 applying	 this	 approach	 to	 spatial	 problem	 solving	 (3.4).	 Finally,	
section	4	concludes	with	a	discussion	of	 three	 levels	of	 cognitive	processing	 in	 spatial	
problem	solving	and	implications	for	cognitive	approaches	to	spatial	problem	solving.		

	

1.1	 Physical	representation	of	space:	Geographic	maps	

Maps	 distort	 the	 space	 in	which	we	want	 to	 navigate.	Most	 notably,	maps	 shrink	 the	
space	to	such	an	extent	that	 it	 is	not	possible	to	walk	or	drive	in	map	space.	Or	stated	
differently:	 although	maps	 represent	 space	 physically	 by	means	 of	 a	 concrete	 spatial	
medium2,	 they	abstract	 from	certain	aspects	of	 the	 spaces	 they	 represent.	 Specifically,	
they	systematically	substitute	distances	by	smaller	distances	in	such	a	way,	that	certain	
other	 aspects	 of	 space	 (e.g.	 connectivity,	 orientation,	 angles,	 relative	 distances,	 or	
relative	areas)	are	preserved.	
Thus,	spatial	relations	in	environmental	space	are	projected	into	similar	spatial	relations	
in	 map	 space.	 Due	 to	 the	 specific	 analogical	 way	 of	 representing	 spatial	 relations	 by	
identical	 or	 projections	 of	 spatial	 relations	 (Sloman,	 1971;	 Robinson	 et	 al.,	 1995)	 we	
perceive	these	spatial	relations	in	the	map	as	if	we	would	perceive	them	in	the	environ-
ment	 under	 more	 favorable	 perception	 conditions	 (more	 suitable	 perspective,	 scale	
adapted	 to	 our	 field	 of	 view,	 no	 obstructions)	 (MacEachren,	 1995).	 As	 far	 as	 spatial	
relations	are	concerned,	it	 is	as	if	we	would	look	at	the	spatial	environment	with	a	de-
magnifying	lens	or	from	a	large	distance	above	the	ground.	 	 If	we	have	the	map	at	our	
current	location,	we	can	do	this	without	the	effort	of	moving	about	the	environment.		

The	map	offers	a	bird’s	eye	view	of	an	ample	set	of	spatial	relations	that	we	could	rarely	
observe	all	at	once	in	the	environment,	without	the	help	of	a	high	point,	like	the	peak	of	
a	mountain	or	a	hot	air	balloon.	Allowing	us	to	perceive	many	more	spatial	relations	at	
once,	rather	than	keep	in	mind	some	objects	while	we	move	around	and	discover	others,	
and	 then	establish	 the	relation,	 the	map	 thus	acts	as	an	extended	memory	with	visual	
access,	and	supports	a	form	of	external	cognition	(Scaife	&	Rogers,	1996;	Tversky	&	Lee,	
1999;	Card	et	 al.,	 1999).	The	operations	we	can	perform	on	 the	map	are	basically	 the	
same	 as	 the	 ones	 we	 can	 perform	 in	 the	 environment	 (e.g.	 triangulation,	 measuring	
distances,	path	following);	however,	we	must	be	aware	of	distortions	if	we	project	from	

																																																								
2	We	will	 use	 ‘representation’	 and	 ‘medium’	 synonymously	 in	 this	 chapter.	While	 ‘representa-
tion’	emphasizes	structural	aspects,	‘medium’	emphasizes	physical	and	spatial	aspects.	
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a	sphere	to	the	flat	surface	of	a	map	(Monmonier,	1996).	As	geographic	maps	preserve	
essential	spatial	relations	 implicitly	as	spatial	relations	 and	do	not	abstract	 them	away,	
we	consider	map	representations	as	mild	abstractions	 of	 the	 spatial	 environment	 they	
represent.	

Barbara	Tversky	early	on	pointed	out	that	cognitive	maps	are	spatially	distorted	wrt.	the	
represented	space	(Tversky,	1981,	1992,	1993;	Mark	et	al.,	1999);	this	insight	inspired	
the	spatial	 cognition	community	 including	 the	present	authors	 to	 investigate	potential	
advantages	of	spatial	distortions.	For	example,	why	is	it	easier	to	navigate	with	distorted	
subway	maps	than	with	veridical	maps	even	though	it	should	be	more	difficult	to	match	
those	maps	to	the	environment	(Berendt	et	al.,	1998)?	Once	we	recognize	that	(physical	
or	cognitive)	spatial	distortions	actually	may	simplify	spatial	problem	solving,	we	open	
up	a	whole	new	domain	for	studying	spatial	problem	solving.	

	

1.2	 On	the	difficulty	of	communicating	about	space	and	spatial	representations	

A	 cognitive	 issue	 that	 causes	 problems	 when	 discussing	 spatial	 representations	 and	
spatial	 cognition	 is	 the	 following:	 in	 human	 language	 we	 often	 do	 not	 distinguish	
between	 entities	 in	 the	 real	 world	 and	 their	 physical	 or	 mental	 representation.	 For	
example,	we	point	with	a	 finger	 to	a	 location	on	a	map	and	explain	 to	another	person	
now	 we	 are	 here;	 we	 intend	 to	 express	 that	 we	 are	 located	 at	 the	 place	 in	 the	
environment	that	is	represented	by	the	corresponding	location	on	the	map	that	we	are	
pointing	at.		
An	interesting	aspect	that	contributes	to	the	confusion	between	the	environment	and	its	
representation	is	that,	really,	we	do	not	care	so	much	about	where	we	are	on	the	map;	
we	are	in	fact	interested	to	know	where	we	are	in	the	environment.	The	answer	to	the	
latter	however	would	be	trivial	and	not	useful:	we	are	right	here	where	we	are	standing;	
this	answer	even	is	highly	context-adaptive,	i.e.	it	is	valid	wherever	we	are!		
Interestingly,	 it	 is	 frequently	 easier	 to	 find	 out	 in	 a	 completely	 different	 space	 (map	
space)	where	we	are,	than	in	the	environmental	space	itself.	The	reason	is	that,	on	the	
map,	 our	 perception	 provides	 us	with	 an	 overview	of	 a	multitude	 of	 known	 locations	
(pardon:	representatives	of	known	locations)	(Tversky,	2000);	in	this	way,	we	are	able	
to	 relate	 the	 representation	 of	 our	 location	 to	 the	 representations	 of	 the	 locations	 of	
other	entities,	and	thus	perceive	relations	(in	front,	right,	left,	north,	south,	etc.)	between	
these	 representations.	These	 representations	allow	us	 to	derive	 relations	between	 the	
corresponding	 locations	 in	 the	 environment.	 It	 is	 through	 these	 relations	 that	we	 are	
able	to	orient	ourselves	and	understand	our	environment,	 in	 the	same	way	 in	which	a	
listener	requires	a	few	bars	of	music	to	pass	before	they	can	tell	in	which	tonality	they	
are	“located”-	finding	their	“place”	through	a	web	of	musical	relations.	
Therefore,	 for	 orientation	 purposes,	 there	 is	 no	 necessity	 to	 distinguish	 between	 the	
environment	 and	 its	 map	 representation:	 the	 map	 serves	 as	 an	 aid	 to	 perceive	 the	
environment	and	may	equally	well	be	considered	a	part	of	our	perception	apparatus	(a	
de-magnifying	 lens)	 as	 it	 can	 be	 viewed	 as	 a	 space	 that	 is	 conceptually	 outside	 the	
geographic	environment.	
When	we	 discuss	 cognitive	 processes	 as	 scientists,	we	 have	 a	 different	 situation	 than	
when	 we	 try	 to	 locate	 ourselves:	 as	 scientists,	 we	 need	 to	 carefully	 distinguish	 the	
spatial	 environment	 from	 its	 representation.	But	 in	practice,	 the	problem	domain	 and	
the	 representation	 domain	 are	 conflated	 even	 in	 scientific	 contexts	 as	 if	 they	 were	
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identical.	For	example,	in	much	of	the	artificial	intelligence	(AI)	work,	spatial	problems	
are	defined	on	the	formal	representation	level,	where	–	unlike	in	our	map	example	–	no	
relevant	spatial	relations	are	intrinsically	given	(Russell	&	Norvig,	1995).	On	the	formal	
level,	 however,	 we	 are	 dealing	 with	 descriptions	 of	 spatial	 relations	 rather	 than	 with	
spatial	 relations.	 Formally	 trained	 people	 read	 these	 descriptions	 as	 if	 they	were	 the	
spatial	relations	themselves,	just	as	trained	map-readers	read	maps	as	if	they	were	the	
environments	themselves.		

Descriptions	 of	 spatial	 relations	 make	 some	 properties	 explicit	 which	 are	 implicitly	
present	 in	 physical	 spatial	 structures;	 they	 convert	 these	 properties	 into	 knowledge	
about	 the	 properties.	 For	 example,	 a	 distance	 between	 two	 cities	 is	 implicitly	 given	
through	 the	 distance	 between	 the	 cities’	 locations	 on	 the	map;	 knowledge	 about	 this	
distance	could	be	expressed	explicitly	for	example	by	“distance	(cityA,	cityB)	=	40	km”	or	
by	 specifying	 the	 cities’	 coordinates	 and	 computing	 the	 distance	 through	 an	 explicitly	
specified	algorithm.		

Symbol	 systems	 in	 AI	 (and	 formally	 trained	 people)	 use	 these	 descriptions	 to	 reason	
about	spatial	relations.	This	allows	solving	spatial	problems	indirectly,	by	arguing	about	
what	effects	spatial	relations	and	properties	of	spatial	structures	would	have	if	we	were	
to	 solve	 a	 real	 spatial	 problem.	 Some	 AI	 researchers	 seem	 to	 suggest	 that	 cognitive	
agents	 including	humans	and	other	animals	must	 solve	 spatial	problems	by	 reasoning	
about	them	(Davis,	2013);	but	do	toddlers	or	dogs	reason	about	spatial	relations	when	
they	open	a	door?	How	can	cognitive	agents	solve	spatial	problems	 if	 they	are	 lacking	
the	explicit	symbolic	knowledge	needed	for	reasoning?	Explanations	are	rarely	given.	

	

1.3	 A	wayfinding	example:	Finding	a	shortest	path	between	two	locations	

To	appreciate	some	of	the	issues	involved	in	spatial	problem	solving	and	reasoning,	let	
us	consider	approaches	to	determine	a	shortest	path	between	two	locations	in	a	route	
network.	We	will	 first	 sketch	how	 this	problem	could	be	 solved	directly	 in	 the	 spatial	
environment;	 we	 will	 then	 discuss	 different	 ways	 of	 solving	 this	 problem	 with	 the	
support	of	various	kinds	of	representations.	
	

1.3.1	 Finding	a	shortest	path	in	the	spatial	environment	

To	determine	a	shortest	path	in	a	route	network,	we	must	(a)	be	able	to	compare	lengths	
of	 paths	 and	 determine	 which	 of	 two	 paths	 is	 shorter;	 and	 (b)	 take	 into	 account	 all	
possible	paths	between	the	start	and	the	end	points	of	the	respective	route	network,	to	
be	sure	we	identified	a	shortest	path.	

Unless	 we	 can	 directly	 relate	 and	 perceive	 the	 extent	 of	 two	 paths,	 it	 is	 difficult	 to	
compare	their	lengths,	as	we	lack	sensors	to	compare	path	lengths;	therefore	we	have	to	
resort	to	some	indirect	way	of	comparing	lengths:	for	example,	we	can	identify	the	start	
point	of	a	route	with	one	end	of	a	rope	that	we	stretch	out	along	the	route;	we	can	mark	
the	 rope	 at	 the	 end	 of	 the	 path	 (provided	 it	 is	 long	 enough);	 we	 then	 can	move	 the	
marked	rope	section	to	another	path	and	determine	whether	its	length	is	less,	equal,	or	
more	 than	 the	marked	segment	of	 the	rope.	 In	doing	so,	we	assume	 that	 the	 length	of	
ropes	is	preserved	when	they	are	moved	and	we	make	use	of	the	transitivity	property	of	
length:	if	the	length	of	the	rope	section	is	the	same	as	the	first	path,	then	comparing	the	
second	path	to	the	rope	yields	the	same	result	as	comparing	the	second	path	to	the	first	
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path	 would	 yield	 if	 we	 could	 do	 it.	 Note	 that	 we	 do	 not	 have	 to	 measure	 lengths	
quantitatively	in	order	to	compare	them.	
There	 are	 other	 methods	 for	 indirectly	 comparing	 lengths	 in	 spatial	 environments;	
popular	ones	 include:	 counting	 the	number	of	 steps	of	 constant	 length	and	comparing	
the	step	counts;	moving	along	the	paths	at	constant	speed	and	comparing	the	traversal	
times	 (this	 can	 be	 done	 qualitatively	 by	 comparing	 contents	 of	 sand	 clocks	 or	
quantitatively	by	measuring	times	that	then	can	be	compared).	

An	additional	challenge	will	be	to	make	sure	that	we	take	into	account	all	possible	paths;	
this	 requires	 an	 ability	 to	 identify	 paths	 and	 to	 record	 whether	 they	 have	 been	
compared	to	another	path,	and	if	so,	to	which.		
In	summary,	 if	we	solve	the	shortest	path	problem	directly	in	the	spatial	environment,	
we	will	require	tools	for	comparing	lengths	and	for	keeping	track	of	the	problem-solving	
progress.	 These	 tools	 can	 be	 part	 of	 the	 spatial	 environment.	 A	 perceiving	 agent	 is	
required	to	assess	differences	(in	lengths	and	path	identity).	

Solving	 the	 shortest	path	problem	directly	 in	 the	 spatial	 environment	 is	 cumbersome.	
Largely	this	is	due	to	the	size	of	the	environment	and	our	lack	of	sensors	that	can	cope	
with	 this	 size;	 therefore	we	 scale	 down	 the	 size.	 As	we	 are	 interested	 in	 the	 role	 the	
representation	 medium	 or	 the	 structure	 of	 the	 representation	 plays	 for	 the	 problem	
solving	process,	we	will	first	consider	various	media	that	we	can	use	to	solve	navigation	
problems:	a	map	or	visual	graph;	an	abstract	graph;	and	a	list.		

	

1.3.2	 Finding	a	shortest	path	in	a	map	

Let	us	suppose	you	are	using	a	map	 like	 that	 in	Fig.	1	and	you	want	 to	 find	a	shortest	
path	from	the	intersection	of	Normandie	Ave.	and	W	35th	Pl	(symbol	V	on	the	map)	to	
University	 of	 Southern	California	 (symbol	8	 on	 the	map).	 	 In	 order	 to	 find	 a	 shortest	
path,	 one	 could	 naively	 apply	 the	 same	 methods	 as	 in	 the	 ‘spatial	 environment’,	 i.e.	
comparing	all	possible	routes.	One	advantage	of	a	map	representation	is	the	provision	of	
overview	 knowledge.	 The	 straight	 connection	 between	 start	 position	 and	 destination	
provides	a	direct	means	to	compare	the	currently	considered	path	to	a	shortest	possible	
connection,	 the	 linear	distance.	 If	 there	are	several	candidates	whose	 length	cannot	be	
discriminated	visually,	one	may	have	to	compare	them	by	some	indirect	means,	e.g.	by	
using	a	string	in	the	same	way	as	the	rope	in	the	‘spatial	environment’	example	(section	
1.3.1).		
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Figure	1.	Section	of	a	city	map	for	solving	a	wayfinding	problem	with	visual	and	haptic	support.	
	
	
Task-irrelevant	information,	like	buildings	or	parks,	does	not	have	to	be	represented.	In	
the	 abstraction	 of	 the	 spatial	 environment	 that	 leads	 to	 the	 map,	 no	 task-relevant	
information	is	lost,	except	perhaps	altitude	information	or	some	other	spatial	distortion,	
depending	on	the	specific	map	projection	employed.	The	resulting	schematic	map	(Fig.	
2)	 is	 spatially	equivalent	 to	 the	map	as	 long	as	 spatial	 relations	are	preserved,	 i.e.	 the	
graph	provides	the	same	task-relevant	spatial	information.	
	

	

Figure	2:		Distance-preserving	schematic	map	providing	spatial	information	for	path	finding	–	
superimposed	on	the	map.	

	

We	 can	 go	 one	 step	 further	 to	 facilitate	 the	 task	 of	 finding	 a	 shortest	 path:	 we	 can	
construct	 the	 schematic	 map	 as	 a	 ‘string	 map’	 from	 flexible	 non-elastic	 strings,	 that	
connect	the	nodes	of	the	spatial	graph	and	preserve	the	lengths	of	the	edges.	A	shortest	
path	 then	 can	 be	 found	 by	 a	 simple	 physical	 action:	 we	 pull	 apart	 the	 nodes	 that	
correspond	 to	 the	 starting	 position	 and	 the	 target	 position	 until	 we	 obtain	 a	 straight	
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connection	between	them;	the	strings	on	the	taut	connection	represent	a	shortest	path	
(Dreyfus	&	Haugeland,	1974;	Freksa	et	al.,	2016).	
	

1.3.3	 Finding	a	shortest	path	in	an	abstract	graph	structure	

The	 next	 representation	 we	 consider	 is	 an	 abstract	 graph.	 Spatial	 information	 is	
provided	by	means	of	vertices	representing	road	junctions	and	edges	representing	road	
connections.	Abstract	graphs	do	not	convey	distance	 information	of	paths	 implicitly	as	
maps	 do;	 therefore,	 we	 label	 edges	 explicitly	 with	 numerical	 values	 that	 reflect	 the	
distance	between	 junctions	along	 the	corresponding	path.	With	 the	abstraction	 from	a	
map,	 the	 connection	 between	 the	 spatial	 environment	 and	 the	 representation	 is	 lost.	
Although	this	connection	is	not	relevant	for	solving	the	abstract	shortest	path	problem,	
it	will	be	required	to	apply	the	abstract	solution	to	the	real	world.	This	can	be	achieved	
by	explicitly	annotating	abstract	graphs	with	coordinates	or	names	of	locations.	
Our	abstract	graphs	focus	on	road	junctions	and	connections	between	them.	Apart	from	
that,	space	is	not	represented.	Abstract	graphs	can	be	coded	in	various	ways.	A	popular	
representation	 scheme	 for	 graphs	 is	 an	 adjacency	matrix.	 In	 our	 case,	 the	matrix	will	
contain	one	column	and	one	row	for	each	vertex	in	the	graph	(Fig.	3).	The	elements	of	
the	matrix	indicate	whether	the	pairs	of	vertices	are	adjacent	or	not	in	the	graph.	As	we	
want	 to	 identify	 shortest	 paths,	 we	 will	 enter	 the	 length	 of	 the	 corresponding	 path	
segment	 in	 the	matrix	and	 leave	 the	entries	 for	non-adjacent	vertex	pairs	empty.	This	
will	 enable	 suitable	 computer	 algorithms	 to	 determine	 accumulated	 path	 lengths	 of	
chains	 of	 path	 segments.	 Note	 that	 –	 unlike	 in	 the	 map	 where	 each	 location	 in	 the	
environment	 is	represented	by	a	unique	 location	–	each	vertex	 is	represented	twice	 in	
the	 adjacency	 matrix:	 once	 as	 a	 starting	 node	 (row)	 and	 once	 as	 an	 ending	 node	
(column)	of	a	connection.	

	
Figure	3:	Adjacency	matrix	representing	a	segment	of	the	visual	graph	shown	in	Fig.	2.	
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... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
NomAve_WJBlvd ... 0 15
NomAve_W35St ... 15 0 33 16
RayAve_W35St ... 33 0 15

V NomAve_W35Pl ... 16 0 32 15
RayAve_W35Pl ... 15 32 0 32
NomAve_W36St ... 15 0 16 65
SBuAve_W35Pl ... 32 0
NomAve_W36Pl ... 16 0
SBuAve_W36St ... 65 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
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Fig.	 3	 also	 uses	 a	 (2D)	 spatial	 medium	 for	 the	 representation;	 but	 the	 space	 of	 the	
medium	no	 longer	carries	spatial	 information	about	 the	environment.	The	spatiality	of	
the	medium,	however,	still	facilitates	our	perception	of	the	connection	relations	between	
the	vertices,	as	it	provides	an	easy	overview	of	these	relations	to	our	visual	system	at	a	
glance.	Computer	algorithms	usually	do	not	make	use	of	the	spatiality	of	representations;	
they	 ‘look	up’	one	 connection	after	another	and	construct	abstract	 chains	of	 the	 route	
segments	and	accumulate	their	length	values	to	determine	a	shortest	path.		

Fig.	 4	 visualizes	 the	 abstract	 graph	 represented	 in	 Fig.	 3	 in	 a	 more	 human-friendly	
fashion.	As	the	spatial	medium	no	longer	carries	spatial	information,	this	visualization	is	
informationally	equivalent	to	Fig.	3.	

	
	
	
	
	
	

	
Figure	4:	Visualization	of	the	abstract	graph	represented	in	Fig.	3.	Vertices	depict	road	junctions	
and	edges	depict	road	connections;	the	labels	indicate	lengths	of	route	segments.	
	
The	graph	visualization	in	Fig.	5	depicts	the	same	road	network	as	Fig.	1.	This	depiction	
is	 just	one	possible	visualization,	which	does	not	necessarily	reflect	spatial	relations	in	
the	 spatial	 environment.	 An	 arbitrary	 number	 of	 different	 visualizations	 can	 be	
generated	from	an	abstract	graph.	This	implies	that	the	spatial	methods	to	determine	a	
shortest	path,	as	introduced	in	sections	1.3.1	and	1.3.2,	are	not	applicable	to	this	kind	of	
representation.	 For	 comparing	 lengths,	 we	 can	 no	 longer	 compare	 routes	 visually;	
instead,	 we	must	 interpret	 and	 compare	 numerical	 values.	 The	 overall	 path	 length	 is	
determined	 by	 the	 accumulation	 of	 the	 lengths	 of	 the	 individual	 segments.	 As	 a	
consequence,	we	must	compare	all	possible	paths,	e.g.	by	means	of	an	algorithm	like	the	
Dijkstra	algorithm	(Dijkstra,	1959).		
	

Thursday, September 15, 16
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Figure	5:	One	possible	visualization	of	the	complete	abstract	graph	representation	of	the	road	
map	shown	in	Fig.	1	without	vertex	names	and	distance	labels.	

	

1.3.4	 Finding	a	shortest	path	in	a	list	of	path	segments	

Adjacency	matrices	(Fig.	3)	for	route	connections	typically	comprise	a	 large	fraction	of	
empty	 entries,	 as	 vertices	 typically	 are	 directly	 connected	 only	 to	 some	 of	 the	 other	
vertices.	 As	 a	 consequence,	we	 can	 compress	 the	 relevant	 information	without	 losing	
task-relevant	 information	by	focusing	on	the	edges	between	the	vertices	and	explicitly	
representing	only	those	relations	between	vertices	that	comprise	a	direct	connection.	To	
this	end,	the	information	about	the	edges	can	be	represented	by	a	list	of	triples	that	each	
contain	two	labels	representing	the	vertices	and	an	associated	path	 length:	 	(<start-of-
path-segment>, <end-of-path-segment>, <length-of-path-segment>).		
For	example,	we	may	have	a	list	that	contains	the	following	triples	(cf.	Fig.	3):		

(WatWay_DowWay, McCAve_DowWay, 32)  
(DEnd_DowWay, WatWay_DowWay, 12)  
(NomAve_W35Pl, RayAve_W35Pl, 32) 
(RayAve_W35Pl, SBuAve_W35Pl, 32) 
... 

The	list	requires	only	as	many	entries	as	there	are	direct	paths	between	vertices.	Each	
vertex	appears	as	many	 times	 in	 the	 list	 as	 it	 functions	as	a	 starting	or	end	point	of	a	
connection.	The	order	of	the	triples	in	the	list	is	insignificant	(i.e.	the	list	is	interpreted	
as	a	set;	no	information	is	conveyed	by	the	sequence	of	its	elements).	

In	this	representation,	the	graph	has	been	chopped	into	pieces;	spatial	integrity	is	lost.	
However,	 all	 the	 information	 required	 to	 reconstruct	 the	 graph	 correctly	 has	 been	
maintained;	thus,	the	graph	can	be	reconstructed	computationally	by	linking	triples	that	
comprise	identical	vertex	names.	Consequently,	shortest	path	finding	algorithms	like	the	
Dijkstra	algorithm	can	be	applied.	
	

1.3.5	Summary	

Table	1	summarizes	the	progressive	transformation	from	spatially	implicit	information	
in	 environments	 and	maps	 to	 symbolically	 explicit	 information	 about	 spatial	 paths	 in	

Thursday, September 15, 16
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abstract	 graphs	 and	 lists	 of	 edges.	 The	mild	 abstraction	 of	 spatial	 information	 in	 the	
environment	 into	 veridical	 or	 schematized	 maps	 maintains	 task-relevant	 essential	
spatial	features	and	adds	perceptual,	haptic,	and	mental	affordances	for	human	use,	by	
adapting	to	the	visual	and	haptic	field	of	humans	and	permitting	the	use	of	global	path-	
finding	heuristics.		

The	 transformation	 from	 maps	 to	 abstract	 graphs	 switches	 from	 a	 space-based	
representation	 with	 implicitly	 maintained	 spatial	 relations	 to	 a	 feature-based	
representation	 with	 symbolically	 explicit	 representation	 of	 spatial	 features.	 In	 our	
examples,	 the	abstract	graph	 is	represented	by	a	 junction-based	adjacency	matrix	 that	
makes	limited	use	of	structural	landmark	association	by	means	of	rows	and	columns	to	
represent	 information	 implicitly.	 Most	 other	 task-relevant	 spatial	 features	 are	 made	
symbolically	explicit.	

The	 transformation	 from	 abstract	 graphs	 to	 a	 list	 of	 edges	 that	 represent	 direct	 path	
connections	serves	a	compaction	of	the	task-relevant	information	and	no	longer	makes	
use	of	spatial	/	positional	information	(except	within	the	triples	that	denote	the	edges).	
In	 the	 transformed	 representations,	 some	 information	 is	 implicitly	 assumed	 that	
permits	 to	 reconstruct	 spatial	 integrity	 to	 some	 extent.	 For	 example,	 we	 assume	 that	
identical	location	identifiers	refer	to	a	unique	location	(and	in	some	systems	we	assume	
that	 distinct	 location	 identifiers	 refer	 to	 distinct	 locations);	 this	 permits	 us	 to	
reconstruct	correctly	connected	graph	structures	from	rather	sparse	information	about	
edges.	
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Table	1:		Progressive	transformation	from	spatially	implicit	information	in	spatial	environments	
and	maps	(left)	to	symbolically	explicit	information	about	paths	in	abstract	graphs	and	lists	
(right).	

 Environment Map Abstract graph List of edges 

Spatial 
abstraction 

(none) Mild abstraction: 

Space-based  
=> space-based 

• Relative locations 
preserved 

• Scale:  
absolute distances  
=> relative distances 

• Dimensions: 3D => 2D 
• 2D connectivity 

preserved 
• 2D orientations 

preserved 

Spatial integrity is largely 
maintained 

Transformation: 

Space-based  
=> junction-based 

• Locations of junctions:  
implicitly unique 
=> conceptually separated 
into start & end of multiple 
path segments 

• Distances: implicit => 
explicit 

• Path segment connectivity:  
implicit through matrix 
structure and labels 

Spatial integrity is partially 
dissolved 

Compaction: 

Junction-based  
=> path segment-based 

• Location of junctions: start & 
end of multiple path 
segments => start & end of 
individual path segments 
 

• Distances: explicit 
 

• Path segment connectivity: 
implicit through label 
uniqueness 

Spatial integrity is fully 
dissolved	

Spatial 
features 

(all present) • Absolute 2D location 
explicit (map section) 

• Relative 2D locations 
implicit (spatial medium) 

• Spatial scale (explicit / 
implicit) 

• Connectivity relations 
(spatially implicit) 

• 2D orientations (spatially 
implicit) 

• Connectivity between 
path segments implicit 

• Implicit representation of 
missing connections 

 

• Locations of junctions 
(explicit by label)  

• Direct distances between 
junctions (explicit by label) 

• Junction identity (partly 
spatially implicit in matrix; 
partly symbolically implicit 
through label) 

• Direct connections between 
junctions explicit 

• Connectivity between path 
segments implicit 

• Explicit representation of 
missing direct connections  

 

• Locations of junctions  
(explicit by label)  

• Direct distances between 
junctions (explicit by label) 

• Junction identity (symbolically 
implicit through label) 

 
• Direct connections between 

junctions explicit 
• Connectivity between path 

segments implicit 
• Implicit representation of 

missing direct connections  

Spatial 
affordances 

• Physical motion 
through 
environment 
until goal is 
reached 

• Random path 
selection 

 

• Overview perspective 
• Perceptual path length 

comparison 
 

• Orientation-based 
heuristic path selection 

• Haptic or mental 
simulation of path 
traversal 

 

• Partial junction identity due 
to matrix structure 

(none) 

	

The	spatial	integrity	that	collocates	all	features	of	a	spatial	location	at	that	location	in	a	
spatial	environment	is	progressively	dissolved	in	the	transitions	to	map,	graph,	and	list		
respectively,	 such	 that	 all	 spatially	 implicit	 information	 in	 the	 environment	 that	 is	
represented	will	be	made	symbolically	explicit	at	the	final	stage.	
	
	 	



	 	 	12	

2	 A	fresh	look	at	spatial	problem	solving	
Many	 spatial	 problems	 are	 solved	 every	 day	 without	 representing	 them	 as	 spatial	
problems	in	the	mind	or	the	computer.	For	example,	my	keys	open	locks	mechanically	
without	 a	 representation	 of	 the	 lock’s	mechanism	needing	 to	 exist	 in	my	mind;	 doors	
open	by	leaning	against	them	or	“magically”	through	sensor-controlled	mechanisms	that	
respond	to	my	approaching	the	door.	In	these	cases,	physical	affordances	(Gibson,	1979)	
established	in	the	interaction	between	the	environment	and	the	agent	enable	solutions	
to	spatial	problems	without	reasoning	needing	to	be	involved.		

While	 this	 type	 of	 problem	 solving	may	 be	 intellectually	 unsatisfactory	 for	 computer	
scientists,	 as	 cognitive	 scientists	 we	 must	 acknowledge	 that	 such	 an	 action	 and	
perception-based	 approach	 developmentally	 precedes	 reflective	 thinking	 and	 most	
likely	 is	a	prerequisite	 for	building	up	mental	 representations	of	 spatial	problems	and	
for	 spatial	 problem	 solving	 (Johnson,	 2009;	 Needham,	 2009;	 Keen,	 2003).	 Initially,	
cognitive	 agents	 can	 relate	 cause	 and	 effect	 of	 actions;	 later,	 they	 can	 describe	 and	
possibly	 understand	 the	 underlying	 process.	 At	 that	 point,	 cognitive	 agents	 have	 a	
representation	 that	 may	 enable	 them	 to	 find	 problem	 solutions	 mentally	 or	
computationally	by	reasoning.	Once	 they	have	generated	a	solution	by	reasoning,	 they	
can	apply	it	to	the	actual	spatial	situation	in	the	environment.	

We	can	distinguish	two	types	of	processes	involved	in	spatial	problem	solving:	problem	
solving	 processes	 that	 operate	 in	 a	 given	 medium	 such	 as	 the	 physical	 space,	 a	
geographic	map,	a	logic	formalism,	or	some	other	representation	of	space;	and	problem	
transformation	processes	that	transform	problems	between	different	media	or	kinds	of	
representations.	 AI	 problem	 solving	 has	 been	 largely	 concerned	with	 the	 first	 type	 of	
process	(e.g.	Fikes	&	Nilsson,	1971);	but	there	also	are	approaches	on	the	formal	 level	
that	 re-represent	 a	 given	 problem	 in	 a	 different	 formalism	 in	 order	 to	 determine	 a	
problem	solution	more	easily	(Yan	et	al.,	2003).	The	role	of	different	representations	has	
been	 discussed	 by	 Bobrow	 (1975),	 Palmer	 (1978),	 Marr	 (1982),	 Sloman	 (1985),	 and	
Freksa	(2015);	the	importance	of	paying	attention	to	the	transformation	between	media	
or	forms	of	organizing	knowledge	to	achieve	such	transformations	were	demonstrated	
by	Freksa	(1988)	and	Olteţeanu	(2016).	

Different	media	(physical	space,	map	space,	diagrams,	 logic	representation,	etc.)	afford	
different	 operations	 and	 thus	 favor	 different	 kinds	 of	 problem	 solving.	 Therefore,	
solving	 the	 same	 problem	 in	 different	 media	 or	 representations	 results	 in	 different	
process	structures	and	possibly	in	a	different	scalability	of	the	problem	solving	process	
(Larkin	&	Simon,	1987).	

	

2.1	 Components	of	spatial	problem	solving	

Spatial	 problems	 can	 be	 given	 in	 physical	 space	 or	 in	 an	 abstract	 form;	 similarly,	 the	
problem	solution	 can	be	given	as	 a	 spatial	 configuration	or	 in	 the	 form	of	 an	 abstract	
description.	Accordingly,	we	 can	distinguish	different	kinds	of	 spatial	problem	solving	
processes,	depending	on	whether	they	are	performed	entirely	within	the	spatial	domain,	
entirely	within	the	abstract	domain,	or	by	some	sort	of	a	combination.	

For	 the	present	discussion,	we	will	 focus	on	problems	that	are	given	 in	physical	space	
and	 for	which	 the	 solution	sought	 is	 a	 spatial	 configuration.	For	 this	 situation,	we	can	
identify	 four	 basic	 spatial	 problem-solving	 components	 that	may	 be	 involved	 in	 these	
processes:	
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1 Solving	a	physically	spatial	problem	by	operating	on	 the	problem	configuration	
within	the	spatial	medium	

2 Solving	a	spatial	problem	by	processing	the	description	of	the	problem	
3 Transforming	 a	 physically-spatial	 problem	 into	 a	 differently	 structured	 (e.g.	

abstract)	representation	medium		
4 Transforming	 the	 description	 of	 a	 problem	 solution	 from	 the	 representation	

medium	to	a	spatial	configuration		

These	components	and	their	interrelationships	are	depicted	in	Fig.	6.		
	

	
Figure	6.		From	spatial	problem	to	spatial	solution:	A	spatial	problem	configuration	(bottom	left)	
can	 be	 operated	 on	 directly	 in	 space	 to	 obtain	 a	 spatial	 target	 configuration	 (bottom	 right);	
alternatively,	 it	can	be	transformed	by	abstraction	 into	a	mental	or	 formal	representation	(top	
left),	mentally	 or	 computationally	processed	 into	 a	 solution	 (top	 right),	which	 then	 can	be	 re-
transformed	into	a	spatial	configuration.	

	

2.2	 Putting	the	components	together	

Cognitive	 agents	may	 get	 away	with	 limiting	 their	 approach	 to	 process	 component	 1	
applied	directly	 to	 the	spatial	medium:	operating	on	the	spatial	problem	configuration	
through	 a	 physical	 action,	 in	 order	 to	 obtain	 a	 spatial	 solution	 configuration	 that	
manifests	the	desired	effect	(e.g.	opening	a	door	by	leaning	on	it).	This	can	be	achieved	
by	trial	and	error	that	accidentally	solves	the	problem	(due	to	spatial	affordances)	or	by	
an	intentional	action	that	has	known	effects,	but	has	no	explanation	of	how	the	effects	
are	produced	in	terms	of	process.	

Cognitive	agents	 can	solve	 spatial	problems	 in	a	variety	of	ways:	 they	can	 (A)	 take	an	
action	 that	 solves	 the	 problem	 (i)	 accidentally	 or	 (ii)	 by	 means	 of	 known	 effects;	 in	
either	 case	 spatial	 affordances	 enable	 the	 problem	 solution	 process.	 Or	 they	 can	 (B)	
transform	 the	 spatial	 problem	 into	 a	 formal	 problem	 for	 which	 (i)	 a	 solution	 can	 be	
searched	for	on	the	formal	level	or	for	which	(ii)	a	solution	is	already	known.	Or	they	can	
(C)	transform	the	spatial	problem	into	a	non-formal	representation	such	as	a	map	or	a	
diagram	that	(i)	may	facilitate	visual	search	for	a	solution	or	for	which	(ii)	a	solution	is	
already	known	(see	section	3).	

The	fact	that	cognitive	agents	have	such	a	variety	of	options	for	spatial	problem	solving	
at	 their	 disposal	 suggests	 that	 being	 capable	 of	 pursuing	 several	 of	 these	 options	
requires	 some	 sort	 of	 meta-knowledge	 (or	 intuition)	 regarding	 which	 direction	 to	
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pursue	 in	 order	 to	 solve	 a	 given	 problem.	 This	 meta-knowledge	 involves	 knowledge	
about	the	objectives	to	be	achieved	and	knowledge	or	beliefs	about	strategies	that	may	
be	 successful.	 In	 the	 following	 section	 (2.3)	we	will	 address	 the	 issue	of	objectives;	 in	
section	3.3	we	will	address	the	issue	of	strategies.	

	

2.3	Solving	problems	vs.	understanding	problem	solving	

Spatial	problem	solving	may	serve	different	objectives:	we	may	solve	a	problem	in	order	
to	obtain	a	desired	spatial	configuration	(e.g.	an	open	door	to	pass	through)	or	we	may	
investigate	problem	solving	in	order	to	understand	spatial	transformation	processes	and	
principles	 intellectually	 as	 scientists.	 Although	 these	 two	 objectives	 are	 related,	 they	
require	different	kinds	of	models:	spatial	reconfiguration	requires	physical	action,	and	
actions	 need	 to	 be	 controlled	 by	 some	 sort	 of	 a	mind;	a	mind	 that	 controls	 actions	
requires	 different	 knowledge	 than	 a	 mind	 that	 understands	 spatial	
transformations	and	their	 implications.	Understanding	spatial	transformations	does	
not	 necessarily	 require	 physical	 action;	 it	 requires	 notions	 of	 causality,	 topological	
transformation,	geometric	equivalence,	and	logical	inference.	
Much	 of	 the	 research	 on	 spatial	 problem	 solving	 since	 Euclid	 has	 focused	 on	 the	
intellectual	 challenge	 of	 understanding	 spatial	 structures	 and	 principles	 underlying	
spatial	 operations,	 as	 well	 as	 their	 implications	 regarding	 spatial	 problem	 solving:	 it	
concerned	 general	 spatial	 problems	 that	 we	wanted	 to	 solve	 as	 scientists	 and	whose	
solutions	 indirectly	 also	 could	 solve	 a	 common	 agent’s	 problem	 of	 how	 to	 transform	
specific	 spatial	 configurations	 into	 desired	 target	 configurations.	 Consequently,	 this	
research	 has	 been	 concerned	 with	 formal	 descriptions	 of	 space	 and	 its	 properties:	 a	
representation	 that	 has	 proven	 particularly	 useful	 for	 intellectual	 treatment	 and	
analysis.		

Understanding	 the	 principles	 of	 physical	 space	 certainly	 is	 most	 useful	 for	
characterizing	the	abstract	space	of	potential	approaches	to	(concrete)	spatial	problem	
solving.	But	is	an	understanding	of	formal	spatial	principles	and	structures	sufficient	to	
replicate	 or	 synthesize	 the	 kind	 of	 commonsense	 spatial	 problem	 solving	 exercised	 by	
animals	 and	 common	 people	 (including	 toddlers)	 who	 lack	 the	 explicit	 knowledge	 to	
reason	about	spatial	principles	and	structures?		

We	believe	that	the	difference	between	solving	problems	and	understanding	their	
solution	is	underappreciated.	This	is	partly	due	to	the	mental	identification	of	spatial	
situations	 and	 their	 representation	 that	 was	 described	 in	 section	 1.2.	 Although	
embodiment	and	situatedness	have	become	elaborately	described	and	generally	accepted	
notions,	we	find	 little	work	that	employs	this	approach	to	spatial	problem	solving.	We	
are	 convinced	 that	 it	 is	 worthwhile	 investigating	 naïve	 spatial	 problem	 solving	 by	
studying	spatial	affordances	generated	in	the	interaction	between	cognitive	agents	and	
spatial	 configurations.	Our	aim	 is	 to	understand	and	synthesize	naïve	cognitive	agents	
who	depend	on	pre-intellectual	shortcuts	in	spatial	problem	solving;	these	agents	make	
direct	 use	 of	 spatial	 structures	without	 knowing	 any	 principles	 that	 could	 guide	 their	
actions.	Thus,	our	approach	can	be	viewed	as	an	action	and	perception-based	approach	
that	complements	existing	symbol-based	approaches.	
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3	 Mild	abstraction:	A	third	way	between	direct	and	formal	
problem	solving		

As	 we	 have	 seen,	 solving	 spatial	 problems	 directly	 in	 a	 spatial	 medium	 and	 solving	
problems	abstractly	both	may	have	 remarkable	advantages,	depending	on	 the	 specific	
problem-solving	 requirements.	 We	 have	 seen	 that	 cognitive	 agents	 applying	 their	
perception	and	action	capabilities	 to	maps	and	visual	graphs	can	make	use	of	 implicit	
spatial	 structures	 to	solve	spatial	problems	–	why	should	we	not	equip	computational	
problem-solving	 systems	with	 the	 same	 type	 of	 capabilities?	 This	will	 enable	 them	 to	
make	direct	use	of	multiple	levels	of	features	that	are	integrated	into	spatial	structures.	
This	 also	will	 provide	 shortcuts	 to	 purely	 computational	 spatial	 problem	 solving	 as	 it	
avoids	spatial	disintegration	and	re-integration	steps	involved	in	symbolic	 information	
processing.		
The	 key	 idea	 is	 to	 implicitly	 maintain	 those	 aspects	 of	 the	 problem	 domain	 that	 can	
directly	support	the	spatial	problem	solving	process,	and	to	formalize	only	those	aspects	
that	 do	 not	 support	 a	 solution	 in	 the	 spatial	 domain,	 but	 can	 be	 used	 for	 explicit	
reasoning	 in	 the	 formal	domain	 (Freksa,	1991;	Freksa	et	 al.,	 2000).	A	main	advantage	
will	 be	 that,	 by	 manipulating	 spatial	 structures,	 we	 will	 simultaneously	 manipulate	
coarse	and	 fine	 levels	of	 space,	 as	well	 as	all	 aspects	 that	are	 integrated	 in	 the	 spatial	
representation.	 Spatial	 integration	 thus	 also	 offers	 a	 solution	 to	 the	 frame	 problem	
(McCarthy	&	Hayes,	1969).		
	

3.1	 How	much	abstraction	is	useful?	

A	great	advantage	of	using	spatial	structures	for	spatial	problem	solving	is	that	crucial	
properties	 of	 space,	 such	 as	 topological	 and	 geometric	 laws	 including	 dimensionality	
and	 inherent	relations	between	dimensions,	are	maintained	 intrinsically	and	therefore	
can	be	directly	exploited	without	any	need	to	reason	about	them	(Palmer,	1978;	Dirlich	
et	al.,	1983;	Freksa,	2015;	Furbach	et	al.,	2016).	Generalization	to	a	wider	range	of	sizes,	
orientations,	 and	 geometries	may	be	desirable;	 but	 generalization	beyond	 the	 general	
constraints	 of	 space	 would	 not	 be	 useful	 when	 we	 want	 to	 use	 our	 representation	
exclusively	 to	 solve	 truly	 spatial	 problems.	 On	 the	 contrary:	 if	 we	 relax	 constraints	
generally	 applicable	 to	 spatial	 domains,	 we	 have	 to	 invest	 additional	 computational	
effort	on	the	representation	level	in	order	to	guarantee	results	that	conform	to	the	realm	
of	space	(Freksa,	1997).	
On	 the	 other	 hand,	 generalization	 to	 less	 constrained	 representations	 may	 be	 quite	
useful	for	other	kinds	of	problems,	e.g.	if	we	want	to	reason	about	abstract	mathematical	
spaces	 or	 conceptual	 spaces	 (Gärdenfors,	 2000),	where	we	 explicitly	 intend	 to	 escape	
the	confinements	of	physical	space.	

But	also	for	purely	spatial	problems	there	are	aspects	where	we	can	take	advantage	of	
abstraction.	 In	 the	 path	 finding	 example	 (section	 1.3)	 we	 already	 discussed	 the	
advantages	of	 linearly	scaling	an	entire	scenario.	This	 is	a	 spatially	benign	abstraction	
from	 absolute	 size,	 as	 the	 geometric	 and	 topological	 properties	 of	 the	 domain	 are	
globally	 preserved;	 however,	 if	 specific	 geometric	 properties	 such	 as	 sizes,	 distances,	
and	 angles	 change	 locally,	 global	 spatial	 relations	will	 also	 be	 affected.	 Thus,	we	may	
want	 to	have	abstractions	 that	only	generalize	over	similar	spatial	configurations,	 that	
is,	we	may	abandon	full	geometric	correctness	in	favor	of	a	qualitative	abstraction	that	
maintains	 more	 general	 spatial	 characteristics,	 such	 as	 ordering	 relations	 and	
topological	relations	(Barkowsky	et	al.,	2000).		
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In	 addition,	we	may	want	 to	 use	 representations	 that	 omit	 aspects	 not	 related	 to	 the	
spatial	problem	and/or	we	may	want	 to	apply	spatially	 invariant	 transformations	 that	
preserve	crucial	spatial	properties,	such	as	relative	distance	or	relative	orientation,	and	
in	addition	enable	new	operations.	For	example,	if	a	geographic	problem	essentially	is	a	
2-dimensional	 problem,	 we	 can	 project	 the	 3D	 spatial	 environment	 to	 a	 2D	 map;	 by	
scaling	 the	map	 from	environmental	 space	 to	 the	 scale	 of	 vista	 space	 or	 figural	 space	
(Montello,	1993),	we	permit	perceptual	and	haptic	operations	on	the	map	that	we	could	
not	perform	on	the	corresponding	entities	in	geographic	space	(see	section	1.3.2).	
	

3.2	 Mild	abstraction	in	geographic	maps	

In	 section	 1.3	 we	 illustrated	 for	 the	 shortest	 path	 problem	 how	 we	 can	 adapt	 the	
representation	of	a	given	problem	to	the	problem	solving	tools	available.	We	argued	that	
for	 embodied	 and	 situated	 perceiving	 and	 acting	 agents,	 such	 as	 humans,	 a	 map	
representation	as	a	mild	abstraction	of	the	spatial	environment	has	advantages	over	the	
environment	 itself,	 as	 well	 as	 over	 formal	 representations	 in	 which	 spatially	 implicit	
knowledge	is	made	explicit.	In	the	present	section,	we	will	sketch	how	mild	abstraction	
supports	 the	use	of	different	map	 types	by	human	users,	 for	solving	different	 types	of	
tasks.	

Again,	 we	 will	 maintain	 the	 intrinsic	 properties	 of	 spatial	 structures,	 where	 spatial	
affordances	can	provide	useful	shortcuts,	while	we	will	abstract	from	those	aspects	that	
benefit	 from	generalization.	We	will	discuss	 the	 following	 familiar	 types	of	geographic	
maps:		

• Aerial	photograph	(abstraction	3D	à	2D)	
• Topographic	map	(high-resolution	2D;	vertical	dimension	symbolically	

represented)	
• City	map	(density	of	settlements	à	type	of	urbanization)	
• Road	map	(many	spatial	features	symbolically	abstracted	(e.g.	width	of	road	à	

road	type)	
• Symbolic	sketch	map	(only	topological	arrangement	spatially	represented)	

	

Fig.	7	depicts	a	section	of	the	city	of	Heidelberg	by	each	of	these	map	types.	
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An	 aerial	 photograph	 can	 be	 considered	 the	 most	
veridical	 of	 the	 five	 mappings,	 as	 it	 preserves	 2D	
geometry,	 as	 well	 as	 other	 features	 such	 as	 shape,	
texture,	 and	 color	 to	 a	 high	 degree.	 Interestingly,	 this	
does	not	imply	that	for	a	human	in	the	environment	this	
map	 is	 the	 easiest	 to	 match	 to	 the	 environment.	
Apparently,	 we	 can	 map	 more	 easily	 on	 a	 conceptual	
level	than	on	a	severely	scaled	visual	level.	
	

Topographic	maps	make	height	 information	 that	 is	 lost	
in	the	3D	=>	2D	projection	symbolically	explicit.	Height	
information	is	useful	for	finding	hiking	routes	and	scenic	
views,	for	example.	
	

	
	

Typical	 city	 maps	 make	 street	 names	 and	 landmarks	
symbolically	 explicit	 by	 including	 their	 names	 into	 the	
map.	 In	 addition,	 churches	 or	 other	 landmarks	 are	
symbolically	 represented.	 This	 produces	 an	 interface	
that	 permits	 easy	 matching	 of	 entities	 in	 the	
environment	with	entities	in	the	map.	

	

	
	

Typical	 road	 maps	 transform	 aspects	 of	 spatial	
veridicality	 into	 aspects	 of	 conceptual	 identity:	 Width	
(and	 color)	 of	 road	 symbols	 represents	 the	 road	 type	
rather	than	the	width	of	the	corresponding	road.	
	

	

	
	

Schematic	 maps	 of	 various	 types	 emphasize	 specific	
aspects	 of	 the	 environment	 by	 selectively	 symbolizing	
them	to	support	the	solution	of	specific	problems.	Maps	
of	 transportation	 systems	 such	 as	 subway	 maps,	 for	
example,	 focus	 on	 supporting	 the	 transition	 from	 one	
transport	 line	 to	 another.	 They	 abstract	 from	 other	
aspects,	 the	 representation	 of	 which	 would	 clutter	 up	
the	map.	

	
Figure	7.	Different	levels	of	mild	abstraction	for	different	uses	of	maps.	
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In	geographic	maps,	the	idea	is	to	maintain	as	much	spatial	structure	as	may	be	helpful	
for	solving	the	problem	and	to	add	as	much	symbolic	information	as	may	be	helpful	for	
dealing	 with	 non-spatial	 aspects	 of	 a	 problem.	 Spatial	 information	 and	 symbolic	
information	 compete	 for	 the	 space	 of	 the	 spatial	 representation	 medium.	 The	
assessment	 of	 the	 helpfulness	 can	 be	 done	 on	 the	 basis	 of	 meta-knowledge	 through	
answers	to	questions	such	as	the	following	ones:	

1. Is	the	problem	given	spatially	or	symbolically?	
2. Do	we	require	a	spatial	or	a	symbolic	solution?	
3. Can	we	 treat	 the	 problem	 as	 an	 instance	 of	 a	 class	 of	 problems	 for	 which	 we	

know	or	can	find	a	general	approach?	
4. Do	we	know	solutions	to	similar	problems?	
5. Is	the	problem	at	hand	peculiar	and	requires	a	highly	specific	approach?	
6. Do	we	need	a	 specific	practical	 (one	 shot)	 solution	quickly	or	 can	we	afford	 to	

invest	 time	 to	 search	 for	 a	 general	 solution	 that	may	 have	multiple	 uses	 (one-
time	or	long-term	optimization)?	

7. Is	the	problem	ill-structured	or	well-structured?	

The	example	of	a	map	may	illustrate	that,	for	typical	navigation	tasks,	a	reduction	from	a	
3D	spatial	environment	to	a	2D	projection	may	be	OK,	but	a	reduction	to	1D	would	give	
up	 important	 advantages	 of	 spatial	 integrity.	 In	 particular,	we	 lose	 spatial	 orientation	
information	when	we	 reduce	 from	 2D	 to	 1D;	 together	with	 path	 connectivity,	 spatial	
orientation	 provides	 important	 information	 for	 selecting	 suitable	 path	 candidates	 in	
wayfinding	 problems.	 Formally,	 we	 can	 easily	 construct	 an	 information-equivalent	
representation	of	all	aspects	of	3D	space	by	means	of	1D	relations.	In	effect,	this	would	
correspond	 to	 a	 disintegration	 of	 the	 overall	 spatial	 structure;	 to	 reconstruct	 this	
structure,	extensive	computation	is	required.	

Thus,	 in	order	 to	decide	on	a	suitable	representation	 for	a	spatial	problem,	we	should	
take	into	account	(1)	which	relations	and	structures	of	space	we	need	to	rely	on	and	(2)	
which	 we	 need	 to	 reason	 about.	 We	 then	 can	 design	 representations	 that	 preserve	
structures	we	rely	on	implicitly	(like	certain	distance	and	orientation	relations	in	a	map)	
and	structures	that	we	want	to	reason	about	explicitly.		

	

3.3	 From	geographic	space	to	other	spatial	domains	

After	illustrating	the	notion	of	mild	abstraction	using	familiar	map	representations	and	
familiar	wayfinding	problems,	we	will	now	sketch	how	we	can	make	use	of	the	concepts	
described	 when	 we	 want	 to	 solve	 novel	 spatial	 problems	 for	 which	 we	 have	 to	 find	
suitable	 representations	 in	 order	 to	 find	 a	 solution	 to	 the	 problem.	 In	 the	 following	
discussion,	we	will	refer	to	section	2.2,	which	introduced	various	components	that	can	
be	configured	for	solving	spatial	problems.	As	we	now	have	a	variety	of	spatial	problem	
solving	approaches	at	our	disposal,	meta-knowledge	will	 be	helpful	 to	 select	 from	 the	
alternatives.	We	will	use	spatial	puzzles	in	this	section	as	examples	for	spatial	problems	
for	which	successful	approaches	are	not	obvious.	Spatial	puzzles	 typically	are	given	 in	
the	 form	 of	 a	 spatial	 configuration;	 the	 goal	 of	 the	 puzzle	 is	 to	 obtain	 a	 specific	 new	
configuration.		

If	the	objective	is	to	obtain	a	certain	spatial	configuration,	approach	A	(ii)	(take	an	action	
that	 solves	 the	 problem	 by	 means	 of	 a	 known	 effect)	 is	 the	 method	 of	 choice.	 If	 the	
necessary	 knowledge	 about	 specific	 effects	 of	 actions	 is	 not	 available,	 approach	 A	 (i)	
(trial	and	error)	may	work	if	spatial	affordances	are	known	and	if	the	number	of	actions	
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in	space	is	limited;	then	the	odds	may	be	good	enough	to	find	a	solution,	or	the	agent	can	
keep	track	of	the	steps	that	have	already	been	attempted.		
The	 approaches	 A	 only	 require	 the	 process	 component	 1	 (transforming	 a	 spatial	
problem	into	a	spatial	solution).	As	the	problem	solving	process	takes	place	directly	in	
the	 spatial	 medium,	 transformations	 into	 a	 formal	 or	 mental	 representation	 of	 the	
problem	and	back	are	not	required.	A	drawback	is	that	the	solution	only	will	fit	the	given	
specific	problem,	as	it	is	not	generalized;	however,	the	solution	may	serve	as	a	source	of	
knowledge	for	future	problems	that	appear	related	(for	example	by	means	of	case-based	
reasoning	(Aamodt	&	Plaza,	1994)).	

If	knowledge	about	the	problem	is	not	available,	cognitive	agents	have	a	choice	between	
approaches	A	(i)	and	B	(transform	spatial	problem	into	a	formal	problem)	–	a	situation	
we	frequently	may	be	confronted	with	when	we	attempt	to	solve	spatial	puzzles,	such	as	
the	snake	cube	puzzle	or	Rubik’s	cube	(Fig.	8):	

	 																	 														 						
Figure	8.	Snake	cube	puzzle	and	Rubik’s	cube:	How	can	we	decide	how	we	are	going	to	approach	
the	problem?	

	

Can	we	 solve	 the	 problem	quickly	 by	 trial	 and	 error	 (possibly	 combined	with	 limited	
knowledge	about	effects	of	 local	actions)	or	should	we	solve	the	problem	via	graphical	
or	 formal	 representation	 and	 analysis?	 In	 addition	 to	 process	 component	 2	
(transforming	 a	 formal	 problem	 into	 a	 formal	 solution),	 formal	 analysis	 requires	 the	
process	component	3	that	transforms	the	spatial	problem	into	a	formal	representation	
of	 the	 problem	 (approach	 B).	 This	 transformation	 may	 be	 hard	 to	 find	 unless	 we	
recognize	a	pattern	for	which	we	already	have	an	approach.	
In	case	of	graphical	or	formal	analysis	we	again	can	distinguish	between	two	cases:	B	(i)	
where	we	know	an	approach	that	will	solve	the	corresponding	formal	problem	and	B	(ii)	
where	we	hope	to	find	a	solution	on	the	formal	level	once	we	have	a	suitable	description	
of	the	problem.	While	B	(i)	usually	makes	it	easy	to	find	a	good	problem	representation,	
as	the	representation	is	suggested	by	the	known	solution	to	the	formal	problem,	B	(ii)	
can	 pose	 severe	 challenges	 even	 for	 simple-structured	 problems,	 as	 usually	 there	 are	
many	ways	to	represent	a	given	spatial	problem	and	these	ways	differ	in	their	suitability	
or	 ease	 of	 solving	 a	 given	 problem.	 Examples	 are	 Geoff	 Hinton’s	 cube3 	and	 the	
wine/water	mixing	problem4	(Fig.	9).	Both	problems	are	good	examples	to	demonstrate	
																																																								
3	Geoff	Hinton’s	cube:	Imagine	a	cube	suspended	(by	a	string)	at	one	of	its	corners,	such	that	the	
most	distant	corner	points	down	vertically.	Imagine	a	vertical	axis	through	these	corners.	Now	
turn	the	cube	around	this	axis	 in	one	direction.	By	how	many	degrees	do	you	have	to	turn	the	
cube	until	 for	the	first	time	all	corners	of	the	cube	will	coincide	with	the	corners	and	all	edges	
will	coincide	with	the	edges	of	the	cube	before	rotation?	(Hinton,	1979;	Freksa	et	al.	,	1985).		
4	Wine/water	 mixing	 problem:	 You	 have	 two	 drinking	 glasses.	 One	 contains	 wine,	 the	 other	
contains	water	of	equal	volume.	One	spoonful	of	wine	is	taken	from	the	wine	glass	and	added	to	
the	 water	 in	 the	 second	 glass.	 Then	 an	 equal	 amount	 of	 the	 water-wine	 combination	 is	
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that	 the	 difficult	 part	 of	 solving	 novel	 problems	 is	 finding	 a	 suitable	 representation	
(Polya,	1945);	once	a	good	representation	for	the	specific	problem	has	been	identified,	
the	solution	to	the	problem	may	become	almost	trivial5.	

	 	 	 	
Figure	9		Left:	Geoff	Hinton’s	cube.			 							Right:	The	wine	/	water	mixing	problem.	

	

If	 the	 problem	 solution	 requires	 actually	 carrying	 out	 a	 spatial	 task	 as	 in	 the	 spatial	
puzzles,	the	process	component	4	(transforming	formal	solution	into	spatial	solution)	is	
also	 needed;	 this	 is	 usually	 straightforward	 if	 the	 transformation	 3	 was	 performed	
correctly,	 as	 the	 form	 of	 the	 solution	 is	 constrained	 by	 the	 structure	 of	 the	 spatial	
problem	domain.	For	example,	once	our	 formal	representation	has	computed	an	angle	
for	Hinton’s	cube,	there	will	be	only	one	axis	in	the	physical	cube	situation	to	which	this	
angle	 may	 refer,	 due	 to	 the	 correspondence	 established	 in	 the	 formalization	 of	 the	
problem.	

	

3.4	 Discussion	on	strategic	aspects	

The	sketched	approach	to	spatial	problem	solving	is	particularly	economical	if	we	have	
to	 solve	many	 spatial	 problems	 in	 the	 same	 spatial	 environment,	 as	 the	 environment	
needs	to	be	modeled	only	once	for	all	the	problems	we	have	to	solve,	provided	that	we	
represent	 all	 the	 information	 relevant	 to	 these	 problems	 and	 provided	 that	 we	 can	
represent	 the	environment	 in	such	a	way	that	all	 the	problems	can	be	easily	solved	 in	
that	 representation.	 In	 other	 words,	 the	 spatial	 problem-solving	 component	 3	
(transforming	 a	 physically-spatial	 problem	 into	 differently	 structured	 representation	
media)	that	we	did	not	need	for	solving	the	problem	directly	in	the	spatial	environment	
may	turn	out	to	be	a	worthwhile	investment	if	(a)	we	can	find	a	form	of	representation	
that	can	be	used	for	a	variety	of	problems;	(b)	we	need	to	solve	many	problems	using	
the	 same	 data	 sets;	 and	 (c)	 we	 find	 effective	 and	 efficient	 procedures	 to	 solve	 the	
problems.	 Otherwise	 the	 search	 for	 a	 suitable	 problem	 solving	 representation	 may	
become	disproportionally	expensive.	

																																																																																																																																																																													
transferred	 from	 the	water	 glass	 into	 the	wine	 glass.	Which	mixture	 is	 purer:	 the	 one	 in	 the	
water	glass,	or	the	one	in	the	wine	glass?	(Freksa,	1988).		
5	Solution	to	Hinton’s	cube	problem:	We	can	abstract	from	the	vertical	dimension	and	consider	a	
projection	 of	 the	 cube	 to	 the	 horizontal	 plane.	 The	 three	 edges	 connecting	 to	 the	 suspending	
string	will	divide	the	360°	space	surrounding	the	axis	into	three	equal	sectors	of	120°;	a	turn	of	
120°	will	move	the	cube	into	complete	alignment	with	its	original	position.	Solution	to	the	wine	
/	water	mixing	problem:	After	the	transactions,	each	glass	contains	the	same	volume	of	fluid	as	
before;	the	volume	of	wine	missing	in	the	wine	glass	has	been	replaced	by	water	and	vice	versa;	
both	volumes	are	identical.	The	purity	of	both	fluids	therefore	is	the	same.	
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In	today’s	world	of	computer	power	and	computerization	we	are	able	to	use	information	
in	so	many	new	ways,	that	we	may	be	easily	led	to	believe	that	there	will	be	no	limits	to	
solving	 problems	 with	 computers.	 But	 we	 very	 well	 know	 that	 the	 computational	
complexity	 of	 some	 problem	 classes	 is	 so	 unfavorable,	 that	 even	 simple-structured	
problems	may	quickly	exceed	any	computer’s	capabilities.		
If	we	compare	the	wayfinding	procedure	in	string	maps	(section	1.3.2)	with	wayfinding	
algorithms	we	use	in	computers,	we	observe	that,	unlike	in	computer	algorithms,	we	do	
not	have	to	consider	 laws	of	mathematics	to	 identify	a	shortest	path;	consequently,	no	
effort	is	required	to	apply	such	laws	to	make	sure	we	will	compute	correct	results.	

Why	do	we	have	to	invest	in	computation	in	the	formalized	problem	that	is	not	required	
for	 solving	 the	 original	 spatial	 problem?	The	 answer	 is	 straightforward:	 in	 the	 spatial	
environment,	all	spatial	properties	relevant	to	solving	spatial	problems	are	intrinsically	
given	 (Palmer,	 1978);	 that	 is,	 they	 cannot	 be	 violated	 or	 otherwise	 overcome.	 In	
contrast,	 in	 our	 general	 computer	 formalisms	 we	 are	 free	 to	 describe	 many	 more	
domains	than	spatial	environments	and	spatial	problems;	specifically,	we	can	describe	
impossible	worlds,	conflicting	situations,	and	much	more.	Consequently,	we	must	apply	
a	 ‘computational	 straitjacket’	 to	 make	 sure	 the	 computer	 conforms	 to	 the	 laws	 of	
physical	space	when	solving	spatial	problems.		
	

4	 Conclusion	
A	 theory	 of	 spatial	 problem	 solving	 cannot	 start	 and	 end	 on	 the	 knowledge	
representation	 level.	 It	 must	 include	 the	 spatial	 medium,	 its	 perception,	 its	
representation,	 the	 processes	 operating	 on	 the	 representation,	 and	 the	 spatial	 actions	
that	result	from	these	processes.		

In	this	chapter	we	have	discussed	alternative	ways	in	which	cognitive	systems	can	solve	
spatial	 problems:	 (1)	 by	 perception	 and	 action	 directly	 in	 a	 spatial	 medium	 whose	
structure	 reflects	 the	 spatial	 structure	 of	 the	 problem	 domain;	 (2)	 by	 reasoning	 in	 a	
formal	 medium	 in	 which	 knowledge	 about	 space	 is	 explicitly	 described;	 or	 (3)	 in	 a	
combination	thereof.	As	there	are	several	alternatives	in	which	a	given	problem	can	be	
approached,	 we	 require	 an	 entity	 that	 constructs	 the	 approach	 to	 be	 taken	 or	 that	
decides	 on	 an	 available	 selection.	 This	 entity	will	 be	 able	 to	 take	 better	 decisions	 the	
better	it	understands	the	problem	to	be	solved.		

In	 classical	 AI	 programming,	 the	 task	 of	 deciding	 on	 suitable	 representations	 for	
problem	 solving	 usually	 is	 carried	 out	 by	 the	 program	 designer.	 His	 or	 her	 creativity	
constitutes	much	of	the	intelligence	that	is	later	attributed	to	the	program.	If	we	want	to	
model	the	creativity	of	designers	of	versatile	spatial	problem	solving	agents,	we	should	
equip	 spatial	 problem-solving	 programs	 with	 the	 knowledge	 about	 spatial	 problem	
solving	that	has	been	described	in	this	chapter.	
Fig.	10	depicts	three	levels	of	processing	that	are	involved	in	spatial	problem	solving:		

(1) The	object	level	is	manifested	by	the	substrate	that	hosts	spatial	configurations.	
The	 substrate	 effectively	 integrates	 (i.e.	 collocates)	 the	 attributes	 of	 spatial	
entities.	 For	 example,	 location,	 size,	 orientation,	 and	 also	 molecular	 structure,	
color,	 density,	 weight,	 etc.	 are	 all	 integrated	 at	 the	 same	 place.	 Spatial	
configurations	of	arbitrary	entities	are	the	objects	of	spatial	problems	and	their	
solutions.	 Spatial	 perception,	 such	 as	 vision,	 haptics,	 and	 audition,	 as	 well	 as	
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spatial	actions,	such	as	rotation	or	motion,	operate	on	the	object	level.	In	the	end,	
spatial	 problems	must	 be	 solved	 on	 the	 object	 level.	 So,	 the	 object	 level	 is	 the	
level	on	which	direct	solutions	in	the	spatial	medium	are	performed.	

(2) The	 knowledge	 level	 describes	 the	 object	 level.	 It	 makes	 knowledge	 about	
relevant	 properties	 of	 the	 substrate	 and	 the	 spatial	 configurations	 explicit,	
typically	in	the	form	of	statements	about	facts	and	relations.	Different	aspects	of	
the	 object	 level	 (e.g.	 location,	 size,	 orientation)	 are	 described	 individually	 in	 a	
linear	 fashion,	 i.e.	 in	 some	 formalism	 or	 as	 text.	 This	 means	 that	 the	 spatial	
structure	 of	 the	 object	 level	 is	 disintegrated	 into	 the	 various	 aspects	 that	 are	
made	explicit.	Explicit	knowledge	 is	 the	basis	 for	argumentation	and	reasoning.	
Thus,	we	may	have	inference	rules	and	calculi	on	the	knowledge	level	that	enable	
us	 to	 derive	 new	 facts	 and	 relations	 about	 the	 object	 level.	 So,	 the	 knowledge	
level	is	the	level	on	which	indirect	solutions	in	abstract	media	are	computed.	

(3) The	strategy	level	contains	meta-knowledge	about	actions	and	affordances	on	the	
object	 level,	about	rules	and	processes	on	the	knowledge	level,	as	well	as	about	
their	 effects.	 The	 strategy	 level	 controls	 perception,	 action,	 problem	 and	
knowledge	transformation,	as	well	as	reasoning	for	solving	the	spatial	problem	at	
hand.	Thus,	it	decides	about	the	distribution	of	tasks	between	the	object	level	and	
the	 knowledge	 level.	 By	 maintaining	 certain	 spatial	 structures	 and	
‘aspectualizing’	others	(Bertel	et	al.	2004),	the	strategy	level	can	make	use	of	the	
advantages	of	mild	abstraction.		

	

	
Figure	10:	Levels	of	cognitive	processing	in	spatial	problem	solving.	

	

We	suggest	that	physical	spatial	structures	play	a	special	role	in	cognitive	processing,	as	
they	 are	 capable	of	 integrating	multiple	 aspects	 of	 a	domain	 at	 the	 same	place	 and	of	
manipulating	 them	 simultaneously.	 We	 demonstrate	 how	 spatial	 structures	 can	 be	
exploited	in	spatial	problem	solving	and	how	they	can	be	combined	with	more	abstract	
knowledge	processing	approaches.	

At	 this	 time,	 we	 do	 not	 have	 computer	 architectures	 that	 replicate	 integrated	 spatial	
structures	as	described	 in	this	chapter.	We	therefore	propose	to	 investigate	the	strong	
spatial	 cognition	 paradigm	 in	 physical	 space	 by	 means	 of	 embodied	 and	 situated	
cognitive	agents,	 such	as	people	and	robots,	 to	better	understand	how	 to	make	use	of	
integrated	spatial	structures	in	cognitive	processing.	
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