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On Process Recognition by Logical Inference
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Abstract— The ability to recognize and to understand processes
allows a robot operating in a dynamic environment to rationally
respond to dynamic changes. In this paper we demonstrate how
a mobile robot can recognize storage processes in a warehouse
environment, solely using perception data and an abstract spec-
ification of the processes. We specify processes symbolically in
linear temporal logic (LTL) and pose process recognition as a
model verification problem. The key feature of our logic based
approach is its ability to infer missing pieces of information
by logic-based reasoning. The evaluation demonstrates that this
approach is able to reconstruct histories of good movements in
a lab-simulated warehouse.

Index Terms— plan recognition, temporal logic, spatio-
temporal reasoning

I. INTRODUCTION

Mastering dynamic environments is a demanding challenge
in autonomous robotics. It involves recognition and under-
standing processes in the environment [7]. Recent advances in
simultaneous localization and mapping (SLAM) [20, 21, 22]
build the basis for sophisticated navigation in dynamic envi-
ronments, but but our aim of understanding processes goes
beyond navigation.

In this paper we indicate how the problem of recognizing
processes can be tackled on a conceptual level in the domain of
warehouse logistics. In a warehouse, there is a constant flow of
goods which are moved through space, establishing functional
zones that are connected with certain types of storage processes
(for example, admission of goods into a warehouse makes
use of a buffer zone to temporarily store goods for quality
assurance). Knowing about the in-warehouse processes and
their whereabouts enables warehouse optimization. Hildebrandt
et. al. argue for using autonomous robots as a minimally
invasive means to observe in-warehouse processes [10]. How-
ever, the sensory system of the robot provides uncertain and
incomplete knowledge about the environment and the observed
spatio-temporal patterns. Thus the challenge is to interpret the
observations sensibly.

Many approaches to process recognition rely on statistical
data to train probabilistic classifiers such as Markov networks
[6, 13], Bayesian networks [23], or supervised learning [5].
Approaches based on statistical data perform very well in terms
of recognition rate, but, aside from the need for training, they
do not support flexible queries about processes and they have
they have to be re-trained if new elements or processes are
introduced in the domain. Symbolic approaches have none
of these downsides, but require a model of the observable
processes, which is given in our environment. Additionally, a
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Fig. 1. Conceptual overview of our software architecture

well constructed model allows for efficient use of heuristics
to speed up query processes[8]. Usually, symbolic approaches
are used to tackle plan recognition, which is closely related to
process recognition—see [2, 3] for an overview.

In the following we present a logic-based approach that
allows us to recognize activities purely from qualitative
process descriptions without prior training. By integrating
and abstracting sensory information we are able to answer
queries about observed spatio-temporal activities (such as “How
often have goods been relocated within the storage zone?”)
as well as about regions in space (e.g., “Which areas in the
warehouse have been used as a buffer zone?”). Answering such
queries is an important step towards logistic optimization. The
contribution of this paper is to demonstrate how processes and
their whereabouts can be inferred in a previously unknown
environment.

Referring to the decomposition of process detection by Yang
[23], we propose a multi-step approach to get from low-level
sensory observations to high-level symbolic representations (see
Fig. 1). In our scenario, a robot performs a surveillance task
in the warehouse. Object recognition is outside the scope of
this paper, but in many logistics scenarios goods can easily be
identified by unique labels attached to them (such as barcodes or
RFID tags). Thus, we assume that the robot is able to uniquely
identify goods in the warehouse. The integration of position
estimates for the goods in itself presents a feature-based
SLAM problem. Uncertain and incomplete position estimates
of entities gathered by a probabilistic mapping procedure must
be transferred into a symbolic representation in a symbol
grounding process to allow for high-level descriptions of the
system dynamics. What has been an uncertain position estimate
in the mapping process must become a stable qualitative notion
of location. Based on correspondence of features and locations
in time, we are able to specify processes of interest in an
abstract formal language and, in a third step, tackle the process
recognition problem by model verification.

The formal language we choose to formalize processes
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and to state queries is linear temporal logic (LTL) [17, see
Sect. III-A]. LTL was proposed earlier as a tool for mobile
robotics [1], especially for robot motion planning from high-
level specifications [11, 18]. Recently, this approach has also
been applied to real robotic systems [12]. In the domain of
smart environments, an approach to process detection by LTL
model verification has been presented in [14]. LTL not only
allows for queries about processes, but also about spatial
relations of regions. This approach covers a wide range of
reasoning tasks adequately. In particular, it allows us to query
the occurrence of processes operating on spatial regions and
the concrete whereabouts of those regions at the same time in
one and the same reasoning process.

II. THE WAREHOUSE SCENARIO

We address the problem of understanding so-called chaotic
or random-storage warehouses, characterized by a lacking
predefined spatial structure, that is, there is no fixed assignment
of storage locations to specific goods. Thus, storage processes
are solely in the responsibility of the warehouse operators
and basically not predictable: goods of the same type may be
distributed over various locations and no data base keeps track
of these locations. This makes it a hard problem for people
aiming at understanding the internal storage processes.

On a conceptual level, storage processes are defined by
a unique pattern [19]: On their way into and out of the
warehouse, goods are (temporarily) placed into functional zones
which serve specific purposes (see Fig. 2). All goods arrive
in the entrance zone (E). From there, they are picked up
and temporarily moved to a buffer zone (B) before they are
finally stored in the storage zone (S). Within the storage zone
redistribution of goods can occur arbitrarily often. When taking
out goods, they are first moved to the picking zone (P) from
where they are taken to the outlet zone (O), before being placed
on a truck.

A mobile robot observing such a warehouse is not able
to directly perceive these zones, as they are not marked. For
all zones we know that they exist (that is, that such regions
are used within the storage operations), but not their concrete
spatial extents or their number of occurrences, as they appear
as a result of dynamic in-warehouse storage processes. The
robot can detect and identify goods, and estimate their position.

So when observing this kind of environment, we face the
challenge that for detecting concrete storage processes we rely
on the existence of certain zones, but we do not know their
whereabouts.

III. IN-WAREHOUSE PROCESS DETECTION WITH LINEAR
TEMPORAL LOGIC

To interpret raw sensory data such that we achieve a symbolic
representation of the processes of interest, we first introduce
linear temporal logic and the axiomatization of our domain.
All queries are stated as LTL formulas and can be answered by
model verification. Following this, we describe the symbolic
grounding. Then, we specify the in-warehouse processes in
linear temporal logic and demonstrate the inference process by
an example.

A. Linear Temporal Logic (LTL)

LTL [17] is a modal logic that extends propositional logic
by a sequential notion of time. A formula φ in LTL is defined
over a finite set of propositions with a set of the usual logic
operators (∧, ∨,¬,→). The temporal component is established
by an accessibility relation R that connects worlds (or states)
and a set of modal operators, of which we use the following:
• ◦φ – next. A formula φ holds in in the following world
• �φ – always. A formula φ holds now and in all future

worlds
• ♦φ – eventually. φ will hold in some world in the future

(♦φ↔ ¬�¬φ)

B. Axiomatizing the Warehouse Scenario

1) Propositions: We define the propositions that model the
desired processes in our logic with the help of the following
atomic observables:
• a set G = {G1, . . . , Gn} of uniquely identifiable goods
• a set L = {L1, . . . , Lm} of locations in space at which

goods have been perceived by the robot
• a set Z = {E,B, S, P,O} of functional zones as

described in Sect. II.
The following atoms need to be defined over G, such that we
obtain a finite set of atoms, L, and Z:
• at(G,L) – holds iff a good G is known to be at location L
• in(L,Z) – holds iff a location L lies within zone Z
• close(L1, L2) – holds iff two locations L1, L2 are close

to one another
2) Axioms: Based on constraints of space and general

knowledge about our domain, we axiomatize our domain. One
constraint is that we disregard continuous motion and therefore
only deal with snapshots of the world. This means that all
observed goods are temporarily fixed at their positions.
• A good G can only be at one location at a time. We

introduce the following axioms for all G ∈ G and Li, Lj ∈
L, i 6= j:

A1G,Li,Lj
= �¬

(
at(G,Li) ∧ at(G,Lj)

)
(1)
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• Any object is always located within a zone Z ∈ Z . We
have for all G ∈ G and L ∈ L:

A2G,L = �
(
at(G,L)→

∨

Z∈Z
in(L,Z)

)
(2)

• Locations in different zones are not close to each other,
that is, zones are at least some minimum distance apart.
We have for all Zk, Zl ∈ Z (k 6= l) and Li, Lj ∈ L
(i 6= j):

A3Li,Lj ,Zk,Zl
=�
(
in(Li, Zk) ∧ in(Lj , Zl) (3)

→ ¬close(Li, Lj)
)

• Zones are static. We have for all Zk, Zl ∈ Z (k 6= l) and
L ∈ L:

A4L,Zk,Zl
= in(L,Zk)→ ¬♦in(L,Zl) (4)

A set A subsumes all axioms (1) – (4).

C. Grounding Symbols

So far, we have formal descriptions of the high-level in-
warehouse observables on one hand, and sensory perceptions
from the robot, on the other hand. These need to be connected
to each other in order to perform reasoning on real world data.
That is, we need to transform the sensory information to our
logical propositions at(G,L), close(L1, L2), and in(L,Z).

Mapping a perceived good to a symbol G is trivial in this
task due to the unique identifiers. However, for the good’s
location we will only have an uncertain position estimate
(x, y) ∈ R2 for the entity observed from the mapping process.
These estimates are subject to noise and thus will vary over
time although the observed object remains static. A location
is a qualitative abstraction from positional measurements that
abstracts from uncertainty emerging from sensory perceptions
and the mapping process. Therefore, we need to transform
position estimates to a discrete and finite set of symbols, i.e., to
subsume similar or comparable positions. This transformation
is a function f : R2 → L, that is, every position estimate is
mapped to a single location (see Axiom (1)). To this end, a
clustering method can be applied to map estimates to a set
of prototypical positions—the locations (see Section IV-B).
We ground close(L1, L2) by applying a metric and checking
whether the distance between L1 and L2 is below a certain
threshold.

To ground in(L,Z), we need to identify the functional
zones in the warehouse. These zones are constituted by sets of
locations. For zones Z whose extents are known a-priori by
introducing the respective in-atoms the corresponding locations
LZ ⊆ L can be assigned directly. All remaining locations
Li ∈ L\LZ are known to be not a part of Z, i.e., ¬in(Li, Z),
but (according to (2)) must be part of one of the other zones:
in(Li, Z

′) with Z ′ ∈ Z\Z.
In addition to the axioms A, the propositions close and in

are persistent over all worlds. The set

B = A ∪
⋃

Li,Lj∈L
close(Li, Lj) ∪

⋃

L∈L,Z∈Z
in(L,Z) (5)

is called background knowledge. The only proposition that
changes over different worlds is at(G,L). We traverse through

the time steps t and map all goods Gi with their position
estimates (xi, yi) to corresponding observations obs(t, Gi, Lj)
that assign that Gi has been observed at Lj at time step
t. This yields a series of sets of observations Ot =⋃

Gi∈G obs(t, G, Lj) over time. A new world is established
as soon as our observations change, that is, Ot+1 6= Ot. Then,
from obs(t, Gi, Lj) follows at(Gi, Lj), and the new world
consist of B ∪⋃i at(Gi, Lj).

D. In-Warehouse Processes

We now formalize the in-warehouse processes Admission,
Take-out, and Redistribution:
• Admission – a good G is delivered to the warehouse’s

entrance zone E and moved to the storage zone S via the
buffer zone B. For all G ∈ G and Li, Lj , Lk ∈ L:

AdmissionG,Li,Lj ,Lk
= at(G,Li) ∧ in(Li, E)→ (6)

♦
(

at(G,Lj) ∧ in(Lj , B)→ ♦
(
at(G,Lk) ∧ in(Lk, S)

))

• Take-out – a good G is moved from the storage zone S
to the outlet zone O via a picking zone P . For all G ∈ G
and Li, Lj , Lk ∈ L:

TakeoutG,Li,Lj ,Lk
= at(G,Li) ∧ in(Li, S)→ (7)

♦
(

at(G,Lj) ∧ in(Lj , P )→ ♦
(
at(G,Lk) ∧ in(Lk, O)

))

• Redistribution – a good G is moved within the storage
zone S. For all G ∈ G and Li, Lj ∈ L, i 6= j:

RedistributionG,Li,Lj
= at(G,Li) ∧ in(Li, S)→ (8)

♦
(
at(G,Lj) ∧ in(Lj , S)

)

Process detection can be posed as a model checking problem:
An in-warehouse process is detected when we can find a model
(based on the sensory observations from the robot) that satisfies
the corresponding formula. The history of a good is the chain
of processes that the good is part of and can also be stated as
a formula. A history for a good would be admission, zero or
more redistributions and its takeout.

E. Example

A good G entered the warehouse and was stored in the
entrance zone E at position L1 at time t0. At t1, it was moved
to a location L2 and at t2 it was moved to L3. All these
locations are not close to one another. Let us assume that we
observe the following from this process: We perceived G to
be at L1 at t0, at L2 at t1 and at L3 at t4. See Fig. 3 for a
depiction and the logical interpretations—to ease understanding
the worlds are labeled just like the time points.

These observations constitute a model that satisfies (6), such
that the observed process is an admission, starting in world
t1 and ending in world t4, and also deduces that location
L2 is in the buffer zone and L3 is in of the storage zone.
Note that deduced start and end times differ from the real
admission times: While the admission took place from t0 to t3,
we detect it from observations t1 to t4; this is due to incomplete
observation of the world.



4

in(L1, E)
in(L2, B) ∨ in(L2, S)
in(L3, B) ∨ in(L3, S)

at(G, L3)
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at(G, L1) ∧ in(L1, E) → ♦

� � �� ��
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�
→ ♦
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B ∨ S
B ∨ SG
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sketch

Fig. 3. Example: Model verification for an admission process of good G (only the relevant assertions for each world t0...3 are shown). in(L1, E) is
background knowledge, also it is known that locations L2 and L3 are either part of the buffer zone (B) or the storage zone (S) but not close to one another
so that they cannot belong to the same zone. From this admission refined knowledge about the buffer and storage zone can be inferred: in(L2, B)∧ in(L3, S).

IV. IMPLEMENTATION

A. Mapping of Positions of Goods

We use visual tags to represent our observable features. To
ease the evaluation, some tags are known to be static throughout
the experiments. This allows the map constructed by the robot
to be easily aligned with the ground-truth for evaluation. The
positions of the tags relative to the camera are estimated
using the tag detection routine provided by the ARToolkit
software library1, for which we determined a measurement
model. Positions of detected tags with a sufficient quality
as well as odometry of the robot are fed into the TreeMap
SLAM algorithm [9]. In contrast to [22] we deal with dynamic
objects by using only one map layer in which we handle the
movement of a good by simply comparing its current position
measurement with its expected position. If the positions are
too far apart (in our experiments >1 meter), the good is treated
as having been moved and is added as a new feature into
the SLAM algorithm. This results in a sequence of maps that
contain position estimates and a mapping of goods to positions
at each time step.

B. From Positions to Locations

Measured positions are clustered after each step and the
generated cluster centroids are used as qualitative locations.
Therefore, the mapping of positions to clusters needs to stay
fixed even when new centroids are generated by added data. We
implemented two clustering methods for later comparison: The
first clustering method assigns position estimates to predefined
locations (shown in Fig. 4(a)). We used this method for
evaluation purposes. The second clustering method computes
locations automatically by employing a straightforward greedy
algorithm: Positions are clustered together if their surrounding
circle is below a certain size; otherwise a new cluster is
created (shown for one test run in Fig. 4(b)). Each observation
of a good is now attributed by a location and a time step
(obs(t, G, L)), which is the starting point for the symbol
grounding as described in Section III-C.

1http://artoolkit.sourceforge.net/

C. From LTL–Worlds to Histories

As described at the end of Section III-D histories of goods are
also LTL formulas and as such can also be used during model
verification. It is straightforward to implement the rules as
Prolog clauses and let Prolog try to prove them. The connection
of the world is realized by an ordered list, i.e., two worlds Wi

and Wj are connected if Wj directly follows Wi in the list.
We then use Prolog to constructively prove the existence

of a history for each good by model verification. The history
construction includes the deduction of zones as demonstrated
in the example shown in Fig. 3. In general, many histories
can be verified for the same observations, e.g., moving a good
from A to B to C verifies the model RedistributionG,A,B ∧
RedistributionG,B,C but also RedistributionG,A,C . In the latter
case the observation that the good was at location B is ignored.
Therefore, in ambiguous cases we select the maximal model,
i.e., the history involving the largest number of observations.

V. EXPERIMENTS AND EVALUATION

In our experimental setting we simulated warehouse pro-
cesses in our lab in order to measure to which extend histories
can be identified correctly.2

A. Experimental Setup

Our robot platform is an Active Media Pioneer-3 AT
controlled by a top-mounted laptop and equipped with a SONY
DFW SX900 (approx. 160°FOV) that delivers 7.5 frames per
second.

In our lab we simulate a warehouse that consists of five
dedicated zones (entrance, buffer, storage, picking, outlet) as
seen in Fig. 4(a) and 4(c). 15 tags are distributed within the
environment as static landmarks. Goods are represented by
boxes with visual tags attached to all sides.

An experiment consists of a series of movements of goods
between the zones while our robot is monitoring the environ-
ment. For each of the 10 test runs, the robot was placed in the
lab and driven around until each landmark had been seen at
least twice to ensure a fully mapped environment. Then, we

2Video material of a test run is available at http://www.sfbtr8.
uni-bremen.de/project/r3/ECMR/index.html
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steered the robot in arbitrary round courses, while we moved
boxes through the lab, simulating the previously defined logistic
processes (Sect. III-D).

The duration of a test run was between approx. 11 and
28 minutes in which we moved 3 to 8 goods through the
warehouse, resulting in 4 to 19 detectable processes per run
including runs with only partial histories. Goods were moved
between zones while not covered by sensor surveillance, to
comply with axiom 2 in section III-B. The robot was driven
by hand in the experiments.

As mentioned in section IV-B, we evaluated our approach
with two different clustering methods, each one with 3 different
settings of background knowledge. In the first setting all zones
are previously known, in the second setting only entrance and
outlet are known and in the third one the whereabouts of no
zone are known.

B. Evaluation

We evaluate our approach based on correctly identified
histories. For each good we query its history, i.e., running
the model verification to generate it. A history is correctly
identified if temporal order and number of processes match
the ground truth.

Fig. 5 shows the result of our evaluation. In the most
favorable case of knowing all zones and predefined cluster
centroids we achieve an average recognition rate of 83%. The
experiments comprise of 21 full histories and 18 partial ones.
In partial histories, a good either started in the warehouse or
after its admission never left it again. Our current interpretation
prefers full histories over partial histories and is biased towards
an empty starting warehouse, i.e., if the observations verify both
admission and take-out we prefer the admission. Especially in
the case of having no prior knowledge we found that partial
histories reduced detection rate. In particular, with automatically
generated centroids and no prior knowledge about the zones;
37.9% of the full histories were correctly found, but only 13.3%
of the partial histories were correctly found.

A significant difference can be observed between the two
clustering methods, but both follow the same pattern: additional
prior knowledge results in more correctly identified histories.
If no zone is known, i.e. all zones needed to be inferred, the
results show that the approach is still capable of correctly
identifying histories. This clearly demonstrates the utility of
inference in process recognition.

VI. DISCUSSION

Our work targets online process detection and online queries
while the robot is operating. Thus, we rely on observations of
goods as soon as we detect them, even if the position estimate
is still uncertain. Over time, stability of positions is achieved
by clustering them into locations. Every (new) perception of a
good at a different location (immediately) triggers the creation
of a new world. Poor position estimates (for example, when few
tags are detected due to motion blur while the robot turns) can
easily be mapped to locations that incorrectly induce movement
of a good or lie outside of the zone the good is in. Such cases
result in incorrectly detected histories. The results in Fig. 5
confirm this: When providing stable, pre-defined cluster centers,
detection rates are significantly higher, especially when more
domain knowledge is included. Thus, excluding estimates with
too much uncertainty would improve the detection rate. Using
uncertainty estimates for measured positions will also improve



6

the robustness of geometrical shape estimation for the zones.
However, the current implementation of the TreeMap SLAM
algorithm3 does not provide uncertainty estimates.

In a real-world environment it is reasonable to assume
knowledge about entrance and outlet zones (e.g., by placing tags
to mark the end of the warehouse). The observable difference
between knowing all zones and knowing only entrance and
outlet is relatively small, especially when predefined clusters
are used (83% and 75% respectively). These results illustrate
the feasibility of our approach.

In this work, we currently restrict ourselves to use inference
only on sensory observations. As stated before, the detection
of correct histories improves with better clustering (e.g., by
using outlier detection).

To query more complex information it would be reasonable
to also include knowledge gained within the mapping process.
That is, information on goods we have observed before and
included into the map, but that we are not able to perceive at the
very moment. For these objects, we have a strong belief of their
existence and position, but this belief can—according to the
actual observation—not be validated. A possibility to include
reasoning on such beliefs is to use a logic that provides a modal
belief operator, such as the logic for BDI agents presented in
[16]. Another source of information for more complex queries
could be provided by an ontology, as shown in [15].

Our logic foundation also supports multiple instances of
the same type of good, e.g. splitting or merging packages for
delivery. However, due to limited size in our lab, we did not
include this feature in our experiments.

VII. SUMMARY

In this paper we propose an approach to process detection
based on a specification of processes as temporal logic formulas.
We show in our evaluation that our approach is applicable using
real sensory data from a mobile robot. One strength of our
approach is that it can fill in missing pieces of information
by reasoning about processes and spatial configurations in the
same formalism. It is also possible to query about previously
unspecified processes as well as about spatial facts, such as
functional zones.

Basing our approach on the well-established linear temporal
logic not only works for passive process detection but would
also allow us to incorporate so-called search control knowledge
and perform high-level planning [4], i.e., doing active process
detection in the sense of planning where to go for more
information. This is the objective of our future research.
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