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Abstract

When computational cognitive models are compared regarding their ability to fit empirical
data, it is important to consider the models’ complexity. The parametric bootstrap cross-fitting
method (PBCM, Wagenmakers, Ratcli�, Gomez, & Iverson, 2004) is a promising approach
to model comparison and selection that takes the compared models’ complexity into account.
Applying the PBCM requires solving a classification problem, in which it needs to be deter-
mined whether a goodness of fit value generated from the compared models is more likely
under one or the other of two existing distributions. Previous literature on the PBCM provides
little explicit information on (a) the properties of the distributions one should expect to arise
in the scope of the PBCM or (b) which methods for solving the classification problem may
be suitable (in which situations). This lack o� nformation may hamper use of the PBCM by
cognitive modelers. As part of our general endeavor to make sophisticated modeling methods
more available and accessible to cognitive scientists developing computational models, in this
article we provide detailed analyses of both the distributions that can be expected to arise when
employing the PBCM and the performance characteristics of8 classification methods. Simula-
tion studies involving6 artificial pairs of distributions and pairs of distributions arising from8
pairs of existing cognitive models indicate (a) that the relative location but not the shape of the
two distributions can be expected to be constrained and (b) that the k-nearest neighbor method
constitutes a good general choice for solving the classification problem.

Keywords: Model comparison; Cross-fitting method, Classification, Empirical distributions

1 Introduction

If several computational models are available as potential explanations for the mechanisms un-
derlying certain cognitive phenomena, a common aim is to select that model that is considered
to be the best model according to a set of criteria. Besides qualitative criteria such as falsifia-
bility, plausibility, and interpretability (Shi�rin, Lee, Kim, & Wagenmakers, 2008), an important
quantitative criterion is how well each model is able to account for empirical data that is perti-
nent for the phenomena under investigation. A straightforward way of assessing this ability is to
fit each model to the relevant data and to measure the achievedgoodness of fit(GOF). However,
such a straightforward GOF measure may be misleading, because it neglects the complexity of the
considered models (e.g., Roberts & Pashler, 2000). As illustrated by Pitt and Myung (2002), for
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example, more complex models may achieve better GOF values than simpler models even if the
more complex models do not provide a more accurate account of the mechanisms underlying the
phenomena in question. Accordingly, it is important to take model complexity into account when
assessing competing models with respect to their GOF and a number of methods are available that
are meant to control for model complexity when assessing GOF (see Schultheis, Singhaniya, &
Chaplot, 2013; Shiffrin et al., 2008, for overviews).

One of these methods, the parametric bootstrap cross-fitting method (PBCM, Wagenmakers et
al., 2004), seems particularly interesting for at least two reasons. First, if one of the compared mod-
els captures the actual mechanisms that generated the to-be-fitted data, the PBCM has been argued
to perform optimally in selecting this model (Cohen, Rotello, & MacMillan, 2008; Shiffrin et al.,
2008). Second, the PBCM is applicable to any type of model, since it imposes no constraints on the
modeling paradigm or the models’ structure. These two properties render the PBCM appealing for
model comparison and selection. However, application of the PBCM may be hampered by tech-
nical difficulties in employing this method. Although application of the PBCM mainly consists of
repeatedly running the competing models, one crucial step requires the solution of a classification
problem (see Section 2). Apart from one exception (Cohen, Sanborn, & Shiffrin, 2008) existing lit-
erature employing the PBCM (Cohen, Rotello, & MacMillan, 2008; Jang, Wixted, & Huber, 2011;
Perea, Gomez, & Fraga, 2010; Wagenmakers et al., 2004) does not provide detailed information on
how this classification problem may be solved. Consequently, virtually no information is available
on (a) what methods may be used to solve the classification problem and (b) the properties and
performance characteristics of possible methods. This lack of information may prevent cognitive
modelers from using the PBCM.

As part of our general endeavor to make sophisticated modeling methods more available and
accessible to cognitive scientists developing computational models, we provide a systematic in-
vestigation of 8 classification methods across a wide range of classification situations. By only
considering classification methods that are easy to implement and use even for cognitive scientists
without experience in classification, the results of our investigation foster model comparison and
selection in at least two ways. First, differential strengths and weaknesses of different methods
are identified thus allowing to avoid suboptimal model selection accuracy and unnecessarily long
runtimes when employing the PBCM. Second, since explicit information on possible methods is
provided, the PBCM becomes more accessible to cognitive modeling researchers. Both aspects, we
believe, are helpful for increasing the frequency with which the PBCM instead of GOF assessment
not controlling for model complexity will be employed.

We start our considerations with a brief overview of the PBCM and the classification problem
involved in its application (Section 2). Subsequently, we describe each of the 8 investigated classi-
fication methods and their properties (Section 3). Sections 4 and 5 detail the procedures and results
of the simulations we used to assess the methods’ performance. In Section 6 we discuss impact of
our results on the use of the PBCM, before we close by highlighting main insights and by giving
an outlook on future work (Section 7).

2 The PBCM

Let A and B be two competing models and x a set of observed data (e.g., response times from
different experimental conditions). Furthermore, let ∆gofxAB be the GOF difference of the two
models on the data set x, that is, ∆gofxAB = gofxA−gofxB , where gofxA and gofxB are the goodness
of fits the models A and B achieve on x, respectively. A naı̈ve approach to assessing how well
each model is able to account for empirical data would assume thatA provides the better account if
∆gofxAB ≥ 0 and that B provides the better account if ∆gofxAB < 0. The PBCM aims to improve
on the naı̈ve approach by taking into account how well the models are able to mimic each other,
that is, the ability of each model to provide good fits to data generated by the other model.

To achieve this, the PBCM generally proceeds as follows:
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Figure 1: GOF difference distributions as they may arise in using the PBCM. The blue / green
curve indicates GOF differences obtained when model A / B have generated data. The left panel
shows non-nested distributions, the right panel shows nested distributions with distA being nested
within distB .

1. generate a set of parameter values for all parameters of model A,

2. generate a data set xA by running model A with the parameter values from the first step,

3. fit both models to xA to obtain ∆gofxA
AB ,

4. repeat the above three steps NBS number of times.

These steps will result inNBS many GOF differences for data that has been generated from model
A. If the same four steps are repeated with model B as the data-generating model, one obtains a
second set of NBS many GOF differences. These two sets of GOF differences constitute two
distributions, distA and distB , respectively, that provide information on how well the two models
are able to mimic each other (see Figure 1).

In particular, the two distributions can inform model comparison and selection. Distribution
distA allows to gauge how likely it is to obtain the models’ GOF difference on the observed data,
∆gofxAB , if modelA is the generating model. Distribution distB allows to gauge how likely it is to
obtain ∆gofxAB , if modelB is the generating model. The PBCM selects the model that is associated
with the distribution under which ∆gofxAB is more likely: If ∆gofxAB is more likely under distA,
model A is selected; otherwise, model B is selected. Essentially, this selection procedure amounts
to solving a classification problem: Given two classes (distA and distB) and an observation with
unknown class membership (∆gofxAB), assign the observation to one of the two classes (i.e., select
one of the models). Solving this classification problem accurately is critical for the performance of
the PBCM.

One question related to the PBCM as described so far is how to sample the parameter values
for the data-generating model in step 1 above. Wagenmakers et al. (2004) propose two different
ways of generating parameter values. In the first variant, called data-informed PBCM, parameter
values are determined based on the data that is to be modeled, x. In the second variant, called data-
uninformed PBCM, parameter values are generated independently of x: One first fixes a range of
possible values for each model parameter and a probability distribution across each of these ranges.
Values for generating data are then sampled from the ranges according to the associated distribu-
tions. Since the data-informed PBCM has been argued (Wagenmakers et al., 2004) and shown
(Schultheis & Naidu, 2014) to be inferior to the data-uninformed PBCM regarding model compar-
ison and selection, we exclusively employ the data-uniformed variant in our simulations. For the
sake of brevity we will refer to the data-uninformed PBCM simply as PBCM in the remainder of
this article.
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2.1 Expected Distributions

The properties of the two distributions distA and distB and their relation to each other are of
crucial importance both for the optimal classification performance that is achievable and for which
methods will be able to perform well. Previous research has not explicitly addressed the question
of what kind of distributions may arise in the scope of employing the PBCM. Without specific
assumptions on the models or situations that give rise to the distributions, it seems hard (if not
impossible) to rule out any type of pairs of distributions: In principle, distA and distB may be of
any distribution type and in any relation to each other.

Nevertheless, we think that there are reasons to expect certain types of pairs of distributions to
occur more frequently than others. To see this, consider an idealized situation in which the data
generated from each model does not contain any noise and in which the procedure used for fitting
the models always returns the best possible fit. In such a situation each model will always fit its
own data at least as well as the data generated by the other model:

gofxA
A ≥ gofxB

A ,

gofxB
B ≥ gofxA

B .

These two inequalities together imply that the GOF difference of the two models on data generated
by model A will always be at least as large as the GOF difference on data generated by model B:

gofxA
AB ≥ gof

xB
AB,

∀y such that ∃gofxB
AB ≥ y =⇒ gofxA

AB ≥ y,∀gof
xA
AB,

∀y such that ∃gofxA
AB ≤ y =⇒ gofxB

AB ≤ y,∀gof
xB
AB.

This means that, in such an idealized situation, the two distributions will either not overlap at all or
overlap only in a single GOF difference value.

Due to noise and imperfect fitting, the above inequalities will rarely, if ever, hold in actual
modeling situations. Noise, for example, may produce data sets from model A that can be better
fitted by model B than by model A. However, as long as noise, imperfect fits, and perhaps further
influences do not introduce systematic biases into the obtained GOF differences, the relations for-
malized by the above inequalities will only be clouded such that they are preserved as tendencies in
the obtained distributions. Put formally, unsystematic influences will create distributions for which
the following inequalities on probabilities (P ) hold:

P (gofxA
A ≥ gofxB

A ) > P (gofxA
A < gofxB

A ), (1)

P (gofxB
B ≥ gofxA

B ) > P (gofxB
B < gofxA

B ), (2)

P (gofxA
AB ≥ gof

xB
AB) > P (gofxA

AB < gofxB
AB), (3)

P (gofxA
AB ≥ y) ≥ P (gofxB

AB ≥ y),∀y, (4)

P (gofxB
AB ≤ y) ≥ P (gofxA

AB ≤ y),∀y. (5)

If these relations between probabilities hold, the pair of distributions will be of the kind shown in
the left panel of Figure 1: The distributions may overlap, but one of the distributions will (more
or less clearly) occupy a region with smaller GOF differences than the other distribution. If noise,
imperfect fitting, or other influences introduce one or more systematic biases into the data, however,
some or all of the inequalities may be violated such that, in principle, distA and distB may be of
any distribution type and in any relation to each other. For example, one of the distributions may
be nested within the other in the sense that comparatively small and high GOF difference are more
likely under distB while comparatively medium GOF differences are more likely under distA (see
right panel of Figure 1).

Without knowledge to the contrary, it seems more parsimonious to assume that noise, imperfect
fitting, and other such factors will commonly not introduce systematic biases into GOF differences.
Accordingly, we hypothesized that the distribution pairs arising in the scope of employing the
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PBCM will often be of the type for which the inequalities (1) – (5) on probabilities hold.1 Existing
depictions of PBCM distribution pairs seem to support this hypothesis (see, e.g., Figures 5, 7 – 9,
and 11 in Wagenmakers et al., 2004) and we explicitly test the hypothesis in more detail on the
distributions obtained in our own simulations.

3 Classification Methods

Classification can be a hard task and decades of research have proposed and assessed various meth-
ods to solve classification problems (Duda, Hart, & Stork, 2001, provide an overview). In principle,
many of the methods considered in classification research such as, for example, artificial neural net-
work classifiers or decision trees could be employed for selecting a model in the PBCM. However,
many of the available methods are difficult to apply successfully and, thus, may prevent wider
usage of the PBCM in cognitive modeling research.

In line with our aim to facilitate the use of the PBCM, the 8 methods we consider have been
chosen to be easy to employ even for non-experts in classification. This choice of methods is also
reasonable given that the classification problem that needs to be solved in the PBCM is compara-
tively simple: Only two classes (distA and distB) with scalar instances (GOF difference values).

The considered methods can roughly be divided into boundary methods (Section 3.1) and direct
methods (Section 3.2). To characterize the runtime complexity of the methods we will refer to the
number of samples that make up each of the two empirical distributions (NBS) and to the number
of samples that need to be classified (NTS).

3.1 Boundary Methods

The two distributions distA and distB contain information about the properties of the instances
belonging to each of the two corresponding classes. Boundary methods attempt to extract this
information to establish one or more decision boundaries that yield minimal classification error. If
a new instance with unknown class membership has to be classified, the relation of the instance to
the decision boundaries is assessed. Based on the result of the assessment the instance is assigned
to one of the two classes. When assignment to neither of the two classes is possible, we say that the
method cannot say (CS) to which class the instance belongs. If, for example, 3.5 was identified as
the decision boundary this means that all ∆gofxAB that are less than 3.5 will be assumed to belong
to one class, all ∆gofxAB that are greater than 3.5 will be assumed to belong to the other class, and
all ∆gofxAB that are equal to 3.5 constitute CS cases.

In this example, only a single boundary has been determined and this seems appropriate when-
ever one of the distributions occupies a region with smaller GOF differences than the other distri-
bution (see left panel of Figure 1). A single boundary is less appropriate if the two distributions are
nested (see right panel of Figure 1). In such a case, two decision boundaries are required to achieve
good classification results: The class corresponding to the nested distribution is chosen if ∆gofxAB

lies between the two decision boundaries, and the method fails to classify if ∆gofxAB lies on either
of the two decision boundaries.

Flexibility in using either a single or two decision boundaries requires estimating how many
boundaries are most appropriate. In our simulations we compare properties of distA and distB
to determine the number of employed boundaries. Unless stated otherwise, if the range from the
lowest to the highest GOF difference in distA / distB completely includes the range from the
lowest to the highest GOF difference in distB / distA, we assume that two boundaries need to
be determined. In all other cases a single boundary is determined assuming that the distribution
containing the lowest GOF difference lies to the left of the other distribution.

We decided to restrict our simulations to distinguishing single and nested, two boundary cases.
First, in line with our considerations on the relation of distributions occurring in the scope of the

1Note that our considerations and the resulting hypothesis do not say anything about the shape of distA or distB , but
only about the relation between the distributions. Even for the idealized situation, any distribution shape seems possible.
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PBCM (see Section 2.1), we assumed that situations requiring more than two boundaries will rarely,
if ever, arise. Second, it is not immediately clear how a reasonable algorithm for determining more
than two boundaries may look like.

The boundary methods we considered are binning, smoothed binning, equidistant search, adap-
tive search, and Gaussian parametric. Each of these methods is described in the remainder of this
section. Further detail on properties and implementation of these methods is provided in Table 1.

3.1.1 Binning

The idea underlying the binning method is to approximate the distributions’ densities by accumu-
lating the given samples into k bins and to then determine the decision boundary by finding the
intersection(s) of these approximate densities.

The nestedness of the two distributions is determined by examining the binned distributions. If
all non-zero bins of one distribution are contained within the range of non-zero bins of the other,
the distributions are assumed to be nested. Otherwise, the left and right distributions are identified
by the relative occurrence of their peaks.

For non-nested distributions, we determine the boundary as the mid-point of that bin between
the left and right peak for which the two binned densities cross over. For nested distributions, we
determine the mid-point of two cross over bins: One to the right and one to the left of the peak of
the inner distribution. We refer to this method as Bin, in this article.

3.1.2 Smoothed Binning

One way to reduce the influence of sampling noise on the approximation of the densities is to
smooth the bin values by computing a moving average across N , with N odd, neighbored bins and
to replace the sample count of the middle bin with the average.

This method first accumulated the samples into bins and computed a moving average to smooth
the bin values. Then it proceeded on the smoothed bins as the Bin method. We refer to this method
as Bin-N, where N is replaced by the actual number employed for smoothing.

3.1.3 Equidistant Search

One way to search for the optimal boundary is to pick a number of candidate boundaries and eval-
uate the corresponding classification accuracy for each of these potential boundaries. Equidistant
search, which was employed by Cohen, Rotello, and MacMillan (2008), works with K potential
boundaries that are equidistantly distributed across the joint range of both distributions.

For non-nested distributions, this method estimated classification accuracy for each of the K
candidate boundaries. It chose that point as the decision boundary, which yielded maximum classi-
fication accuracy. For nested distributions, the method enumerated all

(
K
2

)
pairs of points (p1, p2)

such that p2 > p1. For each of these pairs, the classification accuracy considering p1 as the left
decision boundary and p2 as the right decision boundary was estimated. The pair of points provid-
ing maximum classification accuracy was chosen as the two decision boundaries. This method is
termed E-search-K, where K is replaced by the number of candidate boundaries employed.

3.1.4 Adaptive Search

This method is an adaptive version of the equidistant search method. It instantiates a local search
by iteratively employing equidistant search in regions of major interest. It attempts to decrease
the number of potential decision boundaries that need to be considered without sacrificing classi-
fication accuracy by focusing search on the most promising regions of the range covered by the
distributions.

This method also started out with a set of K equidistant points and the classification accuracy
associated with each (pair of) point(s) was determined. The best (pair of) point(s) was used to define
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Method Runtime Complexity Parameters Local Technical
Search Complexity

Bin O(NBS +NTS) k = NBS/10 No Low
Bin-N O(NBS +NTS) N = 3, 5, 9 No Low

E-search-K Non-Nested: O(K ∗NBS +NTS)
K = 10, 1000 No Low

Nested: O(K2 ∗NBS +NTS)

A-search-K Non-Nested: O(K ∗NBS +NTS) K = 5, 10
Yes Moderate

Nested: O(K2 ∗NBS +NTS) T = 5 ∗ 10−8

parametric O(NBS +NTS) - No Low
kernel O(NTS ∗NBS) - No Low
k-NN O(NTS ∗NBS) k = 10 Yes Low

vicinity O(NTS ∗NBS) K = 0.02 Yes Low

Table 1: Parameterization and properties of the considered methods

a new range (a subrange of the original range) from which againK equidistant points were chosen.
This iterative refinement of the considered range is repeated until an improvement in classification
accuracy is achieved or until the size of the considered range drops below a pre-specified threshold
T (in our simulation). Of all (pair of) point(s) considered during the search, the one yielding the
highest accuracy is chosen to define the decision bound(s).

For non-nested distribution pairs, the subrange are defined as close proximity (1 equidistant
point to left and right) to the point that gave maximum classification in the current iteration. In
the case of nested distributions, subranges on subsequent iterations are determined by making p1
the left range limit and p2 the right range limit, where point (p1, p2) gave maximum classification
accuracy on the current iteration.

We refer to this method as A-search-K.

3.1.5 Gaussian Parametric

This method assumes that the samples come from distributions that can reasonably well be approx-
imated by normal distributions.

Mean and standard deviation of the empirical distribution were derived from the available sam-
ples. These empirical means and standard deviations are used to define two normal distributions.
The boundaries were then determined analytically from the resulting probability density functions.

Whether the distributions are nested or not directly emerged from computing the decision
boundaries. Two normal distribution either have one or two intersection points and the analyti-
cal solution generated as many boundaries as there are intersections. We refer to this method as
parametric in the remainder of this article.

3.2 Direct Methods

Direct methods do not require identification of decision boundaries. Instead, they directly relate
each new sample to the samples of the two empirical distributions and classify the new sample
based on this relation. As a consequence, (a) there is no need to estimate the number of decision
boundaries for direct methods and (b) the information available from distA and distB needs to be
extracted and considered every time a test difference is classified.

The direct methods we considered are the kernel method, the k-nearest neighbor classifier, and
the vicinity search. In the following we describe each of these methods. Further detail on properties
and implementation of these methods is provided in Table 1.
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3.2.1 Using Kernels2

This method makes use of Gaussian kernels to determine whether a new sample should be assumed
to belong to either of the two distributions.

For each of the two distributionsA andB we defined a Gaussian kernel ga and gb, respectively,
with mean zero and a standard deviation equal to the standard deviation of the corresponding
empirical distribution. For each new sample x, we applied the Gaussian kernels as follows:

fa(x) =
∑
xi∈A

ga(x− xi); fb(x) =
∑
xi∈B

gb(x− xi)

if fa > fb, we assumed that the new sample belongs to distribution A, and if fa < fb, we
assumed that it belongs to distribution B. Whenever fa was equal to fb, the method failed to
classify the sample (i.e., encountered a CS case). This method is called kernel henceforth.

3.2.2 k-Nearest Neighbor

This method is a variant of the k-nearest neighbor algorithm (see, e.g., Duda et al., 2001, Chapter
4.5). The idea underlying this method is that a sample likely belongs to that class whose instances
are closest to the sample.

To classify a sample x, the k nearest samples from each distribution, distA and distB , are
identified and the absolute distance of these samples from x is summed to give a combined distance
da and db, respectively. If da < db, we assume that x belongs to distA; if da > db, we assume that
x belongs to distB . The method cannot make a decision, when the combined distances da and db
are equal. We refer to this method as k-NN in the remainder of this article.

3.2.3 Vicinity Search

This method compares the frequencies of empirical samples from each distributions in a (close)
neighborhood of the test sample.

Vicinity search defined a vicinity V of sample x as

V = x±K ∗R,

where R was the combined spread of two distributions and K was a parameter of the method. The
sample x was assumed to belong to that distribution that yielded the higher frequency in V . In case
the frequencies were equal, the method was unable to determine to which class x belonged. We
term this method vicinity in the following.

3.3 Observations on Method Properties

The differences in the methods’ approaches to classification imply a number of differences in the
methods’ expected behavior. In the following we highlight these differences by discussing impor-
tant properties of each method.

Binning and smoothed binning are conceptually straightforward and appealing, but it can be
difficult to find a good balance between the number of bins and bin size: few large bins provide
a reliable but coarse approximation while many small bins provide a more detailed but perhaps
unreliable approximation. Smoothing may increase reliability, but potentially comes at the cost of
smoothing out not only noise but also variations of interest.

The E-Search allows for performance close to the optimum when K is sufficiently high. At
the same time, runtime of the E-search may increase quadratically in the value of K. Usually, it
will be unclear for a given classification situation which K best balances runtime and classification
performance.

2We thank Arthur Breitman for suggesting this method.
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In comparison to the E-search, A-Search attempts to reduce the number of potential boundaries
without compromising on the search precision and thus improves time requirement considerably.
Given the adaptive nature of the A-Search, its search is local and, thus, susceptible to getting stuck
in local optima. Larger values of K reduce the chance of getting stuck in local optima, but, as for
the E-search, what constitutes a good choice for K may be hard to determine.

The parametric method and the kernel method both are expected to achieve satisfactory per-
formance only, if distA and distB can be approximated by normal distributions. The runtime
complexity of the parametric method is considerably lower than that of the kernel method.

The k-NN method attempts a local density estimation of both distributions around the test
sample. This can lead to misclassifications whenever the local estimate is unreliable (e.g., due to
sampling noise). Such problems may be addressed by varying the value of k, but usually the best
choice for the value of k is unknown. As with all direct methods, a potential drawback of the k-NN
is that its runtime scales with the number of samples that need to be classified.

Vicinity search combines ideas of the k-NN method (local estimation) with ideas of the binning
methods (using a bin for estimation). As a result, it inherits some of the problems associated with
these approaches: (a) unreliable local estimates and (b) the difficulty to determine a good bin size.

To what extent and how these properties of the methods will impact their performance when
utilized in the scope of the PBCM is a largely empirical question. In the following sections we
describe several sets of simulations that address this question.

4 Artificial Distributions

The properties of the two distributions distA and distB that are associated with the two models A
and B depend on the nature of the models A and B and on the situations being modeled, among
others. Since it is not clear how the models’ and situations’ properties map onto distribution prop-
erties, it is difficult to control distributional properties when assessing the methods’ performance by
employing existing cognitive models. Therefore, one part of method assessment considered pairs of
distributions with known properties. Instead of generating distributions by repeatedly running and
fitting models, we generated distributions by sampling from a number of known distributions. This
allowed directly investigating each methods’ susceptibility to the distributions’ shape, nestedness,
and relative spread.

The 6 artificial distribution pairs, S1 – S6, we employed are illustrated in Figure 2. S1 consists
of two normal distributions, one with µ = −5000, σ = 3 ∗ 106 and the other with µ = 1000, σ =
3. S2 also comprises two normal distributions, but this time the two distributions have identical
spread: µ = 0, σ = 2 for the first distribution, µ = 2, σ = 2 for the second distribution. One
normal (µ = 100, σ = 10) and one uniform (over the interval [−100, 1000]) distribution are
combined in pair S3. Pair S4 also has one normal (µ = −70000, σ = 100000) and one uniform
(over the interval [−100000, 0]) distribution. Pair S5 comprises a log-normal distribution (µ =
0, σ = 1) and another log-normal of the same shape, but shifted two units along the x-axis. Pair S6
combines a normal distribution (µ = 2.5, σ = 4) with a log-normal distribution (µ = 0, σ = 1.25).
As a result, pairs S3, S4, and S6 constitute situations with different distribution shapes, pairs S1,
S3, and S4 constitute situations with nested distributions, and pairs S1 and S3 constitute situations
with extreme differences in relative spread. Pair S6 constitutes a situation in which 3 decision
boundaries would be optimal and, more generally, provides a test on the difficulties that may arise
due to (incorrectly) estimating the number of required boundaries.

For each of these distribution pairs, method assessment proceeded as follows: First, NBS
many samples were drawn from both distributions in the pair. The two resulting sets of samples
were treated as analog to distA and distB in the PBCM (see Section 2). Second, NTS many
additional samples were drawn from both distributions in the pair. Based on the two sampled
distributions, each method was used to classify the two sets of NTS many samples.

To obtain a more comprehensive view on the methods’ performance, it seemed important to
assess the methods across different values of both NBS and NTS. In our study, we combined
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S1 S2 S3

S4 S5 S6

Figure 2: The six pairs of artificial distributions employed in the simulations.

NBS values of 100, 1000, and 10000 with NTS values of 100 and 1000 to yield six different
classification situations for each of the pairs S1 – S6. To reduce the influence of sampling noise
on the results, we repeated simulations 100 times for each method for each of the six situations in
each of the six pairs.

As a reference for method performance, we computed the optimal classification accuracy for
each of the model pairs. Optimal performance is 99.9%, 68.8%, 97.2%, 81.2%, 88.1%, and 77.6%
classification accuracy for pairs S1 – S6, respectively.

4.1 Results and Discussion

Two measures were employed to gauge the performance of the considered classification meth-
ods: classification accuracy and runtime. Since absolute runtime depends on the configuration of
the simulating machine, we focused on the relative speed of the different methods by analyzing
normalized runtimes. Both measures were recorded when boundary methods were estimating the
number of boundaries to use (Sections 4.1.1 and 4.1.2) and when boundary methods were fixed to
always use only a single boundary (Section 4.1.3).

4.1.1 Classification Accuracy

Table 2 shows classification accuracy for all methods across the six artificial distributions.
All binning methods yield comparatively poor classification accuracies and smoothed binning

using a moving average of 9 is the worst of all considered methods. The poor accuracy of the
binning methods arises from the difficulty to balance the control of noise and local discriminatory
power within the binning method (i.e., setting the size of the bins and the smoothing window). For
the 6 pairs of distributions considered here, smoothing with a moving average of 3 yielded the best
performance of all binning methods: Bin-3 is the only binning method that, on average, does not
perform worse than all other investigated methods.

E-search-1000 yielded the highest accuracies for all of the first 5 distribution pairs. The reason
that it comes out second best on average is exclusively due to its poor performance on distribution
pair S6. Accordingly, E-search-1000 achieved very good accuracies whenever the number of de-
cision boundaries was estimated correctly. Highlighting the method’s dependence on the number
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Method S1 S2 S3 S4 S5 S6 Avg.
% SE % SE % SE % SE % SE % SE

Bin 71.46 2.00 66.82 0.48 80.64 9.45 76.94 2.02 81.63 2.91 60.65 1.46 73.03
Bin-3 86.86 5.99 68.39 0.18 91.96 2.79 75.89 2.72 76.90 5.91 59.87 1.89 76.64
Bin-5 81, 56 7.80 68.12 0.55 88.12 4.53 70.65 5.22 73.77 7.33 56.69 2.09 73.15
Bin-9 77.42 8.22 63.33 3.27 80.79 8.11 69.13 5.43 69.12 6.32 51.39 3.63 68.53

E-Search-10 87.73 0.84 68.65 0.10 94.12 0.11 74.19 0.37 66.34 4.38 56.52 0.92 74.59
E-Search-1000 99.73 0.07 68.97 0.16 96.96 0.11 80.79 0.24 87.80 0.17 63.63 0.15 82.98

A-Search-5 99.02 0.49 68.75 0.12 93.75 0.08 75.81 0.29 74.61 1.83 57.09 0.99 78.14
A-Search-10 99.72 0.14 68.91 0.16 96.94 0.08 79.56 0.09 83.34 1.19 60.89 1.02 81.56
Parametric 100 0 69.04 0.07 97.16 0.01 79.65 0.20 75.65 0.39 54.40 1.15 79.32

kernel 100 0 69.00 0.10 96.46 0.03 74.92 0.04 83.13 1.27 60.82 0.11 80.72
k-NN 98.98 0.49 67.42 0.13 96.65 0.27 79.87 0.22 87.74 0.09 76.12 0.27 84.46

Vicinity 95.00 0.36 68.26 0.56 96.42 0.01 79.57 0.13 86.66 0.25 71.55 1.11 82.91

Table 2: Classification accuracy and corresponding standard error for artificial distributions when
methods chose the number of boundaries.

of potential decision boundaries that are considered, E-search-10 yielded comparatively poor ac-
curacy. The low accuracy of E-search-10 is mainly due to this method’s difficulties to deal with
strongly peaked distributions over a comparatively wide range of sampled values (e.g., S1, S5).

The accuracies achieved by A-search-5 and A-search-10 indicate that a substantial reduction
of potential boundaries is possible, if the number of potential boundaries considered in each step
of the A-search is not too low. The A-search-10 performs as well as or nearly as well as the
E-search-1000 across all 6 pairs of distributions. The A-search-5 performs worse than both the
E-search-1000 and the A-search-10, but still better than the E-search-10.

Despite the normality assumption underlying the parametric method, it performs close to the
optimum not only for the two pairs of normal distributions (S1, S2), but also for the pairs that
involve uniform distributions (S3, S4). The method produces clearly suboptimal accuracies only
for those pairs that involve log-normal distributions (S5, S6). Consequently, the parametric method
can be quite robust against violations of its assumption, but only if the actual distributions are not
too skewed.

The kernel method relies on the normality assumption to a lesser extent than the parametric
method, because it considers all individual samples for classification. This renders the kernel
method more robust against violations of the normal assumption than the parametric method (e.g.,
S5, S6). Nevertheless, the kernel method tends to perform sub-optimally as soon as one of the two
involved distributions is non-normal (e.g., S4 – S6).

The k-NN achieved the best average accuracy of all considered methods. It performs as well
or nearly as well as the best methods on distribution pairs S1 – S5 and clearly better than any other
method on distribution pair S6. The k-NN outperforms all boundary methods on S6, because the
k-NN needs not estimate the number of boundaries. The k-NN outperforms the other two direct
methods, because (a) in contrast to the kernel method the k-NN makes no assumptions on the type
of distributions and (b) in contrast to the vicinity method the k-NN considers a vicinity that has a
flexible size. As a result, for the 6 considered distribution pairs, the k-NN exhibits the best balance
between optimizing accuracies and being applicable across a range of different situations.

The vicinity search yielded slightly lower than optimal accuracies across all pairs, and clearly
lower accuracies when the two distributions had very different kurtosis (e.g., S1, S6). These accu-
racy decrements arise from the method’s use of a fixed fraction of the joint range that is covered
by the two distributions. This renders the vicinity search prone to misclassification, if samples fall
close to steeply rising densities.

4.1.2 Runtime

Each methods’ normalized runtime is shown in Table 3: The methods differ considerably in how
long it takes to apply them. By far the slowest method on average is the E-search 1000, which
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Method S1 S2 S3 S4 S5 S6 Average
Bin 6.1E-6(2.1E-6) 7.2E-6(2.8E-6) 6.0E-6(2.3E-6) 6.5E-6(2.3E-6) 5.5E-6(2.0E-6) 5.8E-6(2.0E-6) 6.2E-6

Bin-3 6.8E-6(2.6E-6) 8.1E-6(3.2E-6) 6.9E-6(2.7E-6) 7.2E-6(2.8E-6) 6.5E-6(2.5E-6) 6.5E-6(2.5E-6) 7.0E-6
Bin-5 6.9E-6(2.6E-6) 8.1E-6(3.2E-6) 6.9E-6(2.7E-6) 7.0E-6(2.8E-6) 6.4E-6(2.5E-6) 6.4E-6(2.5E-6) 7.0E-6
Bin-9 6.9E-6(2.6E-6) 8.0E-6(3.3E-6) 6.9E-6(2.7E-6) 7.0E-6(2.8E-6) 6.4E-6(2.5E-6) 6.4E-6(2.5E-6) 6.9E-6

E-Search-10 1.1E-4(5.4E-5) 2.2E-5(9.9E-6) 1.0E-4(4.8E-5) 1.1E-4(5.4E-5) 5.1E-5(2.4E-5) 1.9E-5(8.4E-6) 7.0E-5
E-Search-1000 1(4.9E-1) 3.4E-2(1.4E-2) 8.9E-1(4.4E-1) 9.9E-1(4.9E-1) 3.6E-1(1.7E-1) 2.5E-3(6.6E-4) 5.5E-1

A-Search-5 5.3E-4(2.7E-4) 8.7E-5(4.4E-5) 9.2E-5(4.28E-5) 9.9E-5(4.8E-5) 8.0E-5(3.9E-5) 5.4E-5(2.7E-5) 1.6E-4
A-Search-10 1.0E-3(5.3E-4) 8.8E-5(4.3E-5) 5.2E-4(2.6E-4) 5.0E-4(2.5E-4) 2.2E-4(1.0E-4) 7.2E-5(3.4E-5) 4.1E-4
Parametric 5.0E-6(1.8E-6) 5.1E-6(1.8E-6) 4.8E-6(1.7E-6) 5.3E-6(1.8E-6) 5.0E-6(1.8E-6) 5.0E-6(1.8E-6) 5.0E-6

kernel 1.8E-1(1.4E-1) 1.1E-1(7.9E-2) 1.2E-1(8.7E-2) 1.1E-1(8.0E-2) 1.1E-1(8.1E-2) 1.1E-1(8.0E-2) 1.2E-1
k-NN 3.7E-3(2.7E-3) 3.7E-3(2.7E-3) 3.7E-3(2.6E-3) 3.7E-3(2.7E-3) 3.7E-3(2.7E-3) 3.7E-3(2.6E-3) 3.7E-3

Vicinity 2.4E-3(1.7E-3) 2.2E-3(1.6E-3) 2.3E-3(1.7E-3) 2.2E-3(1.6E-3) 2.5E-3(1.8E-3) 2.5E-3(1.8E-3) 2.4E-3

Table 3: Normalized runtime for classification of artificial distributions when methods chose the
number of boundaries. Standard error is shown in parentheses.

takes up to 3 seconds on those pairs that are estimated to require two boundaries (S1 and S3 – S5).
These large runtimes are a result of the way the E-search treats pairs for which two boundaries
need to be determined. In such situations, as explained in Section 3.1.3, the required time scales
quadratically with the number of equidistant points in the E-search. If only a single boundary needs
to be determined, the E-search-1000 is much faster, though still comparatively slow (see S2 and
S6).

A similar pattern across the six distribution pairs is evident also for A-search-10, A-search-5,
and E-search-10. However, all of these three are much faster than the E-search-1000 due to the
fact that they need to consider much fewer equidistant points during boundary search. All other
boundary methods, the binning variants and the parametric method, are very quick.

The direct methods are generally slower than the boundary methods, because for each new
sample that needs to be classified, the direct methods need to consider all of the samples of the
two distributions to reach a classification decision. As a result, the direct methods not only need
more time than boundary methods, but also show a much steeper increase in runtime with an
increase in the number of samples that need to be classified. The kernel method is the slowest of
all direct methods, because it requires frequent evaluation of the Gaussian density function, which
is a comparatively expensive computational process.

4.1.3 Single Boundary Results

We have already discussed the possible impact that the (incorrect) estimation of the number of
decision boundaries can have on boundary methods (see Section 3.1). To quantify the effect the
number of decision boundaries has on method performance, we conducted additional simulations
that restrict boundary methods to the use of a single boundary.

Accuracy and runtime results of the single boundary simulations are displayed in Tables 4
and 5.3 The figure indicates that restriction to use only a single boundary leads to a – for some
methods marked – speed-up. For all methods, it also leads to a substantial decrease in accuracy in
situations in which the two distributions are nested. Accordingly, allowing for more than a single
boundary and estimating the number of boundaries seems (a) necessary if nested distributions can
be expected to arise and (b) reasonable if incorrectly assuming two boundaries is either a rare case
or does not lead to substantial increases in runtime.

4.1.4 Discussion

The results obtained for the six pairs of artificial distributions allow a first assessment of the suit-
ability of the considered methods.

3The direct methods are not influenced by the restriction of using only a single boundary. The results of these
methods are only displayed for reference and will not be discussed further.
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Method S1 S2 S3 S4 S5 S6 Avg.
% SE % SE % SE % SE % SE % SE

Bin 58.58 2.09 67.70 0.32 71.09 7.12 62.20 0.67 81.86 3.10 61.13 1.16 67.09
Bin-3 68.33 2.98 68.79 0.18 81.13 0.69 60.26 1.46 77.02 5.90 59.57 2.02 69.18
Bin-5 65.39 4.13 68.30 0.48 77.56 1.50 58.47 2.28 73.81 7.49 56.61 2.10 66.69
Bin-9 63.17 3.99 63.37 3.27 71.01 5.28 57.74 2.19 69.14 6.27 51.36 3.70 62.63

E-Search-10 69.24 0.32 68.48 0.13 88.89 0.05 65.02 0.40 66.42 4.42 56.11 0.74 69.03
E-Search-1000 74.85 0.03 68.96 0.11 89.48 0.09 68.85 0.18 87.94 0.12 63.13 0.06 75.54

A-Search-5 74.38 0.11 68.70 0.20 88.98 0.07 68.35 0.15 86.71 0.17 56.79 0.84 73.98
A-Search-10 74.64 0.05 68.74 0.18 89.36 0.06 68.70 0.13 87.90 0.09 60.79 0.70 75.02
Parametric 50.14 0.04 50.04 0.03 64.53 0.52 53.45 0.18 51.49 0.61 50.36 1.20 53.33

kernel 100 0 69.20 0.12 96.49 0.03 74.80 0.11 83.13 1.26 60.77 0.05 80.73
k-NN 98.99 0.49 67.28 0.09 96.67 0.26 79.84 0.23 87.74 0.09 76.05 0.21 84.43

Vicinity 94.88 0.34 68.37 0.45 96.36 0.02 79.54 0.09 86.66 0.25 71.68 1.11 82.92

Table 4: Classification accuracy and corresponding standard error for artificial distributions when
methods were restricted to use a single boundary

Method S1 S2 S3 S4 S5 S6 Average
Bin 5.7E-6(2.1E-6) 6.8E-6(2.5E-6) 5.6E-6(2.2E-6) 5.9E-6(2.2E-6) 5.4E-6(2.0E-6) 5.5E-6(1.9E-6) 5.8E-6

Bin-3 6.5E-6(2.5E-6) 7.7E-6(3.0E-6) 6.5E-6(2.6E-6) 6.7E-6(2.6E-6) 6.2E-6(2.4E-6) 6.2E-6(2.3E-6) 6.6E-6
Bin-5 6.4E-6(2.6E-6) 7.7E-6(3.0E-6) 6.5E-6(2.6E-6) 6.7E-6(2.7E-6) 6.1E-6(2.4E-6) 6.2E-6(2.3E-6) 6.6E-6
Bin-9 6.4E-6(2.6E-6) 7.5E-6(3.1E-6) 6.4E-6(2.6E-6) 6.7E-6(2.7E-6) 6.2E-6(2.4E-6) 6.1E-6(2.4E-6) 6.5E-6

E-Search-10 1.9E-5(8.2E-6) 1.9E-5(8.6E-6) 2.5E-5(1.1E-5) 1.7E-5(7.9E-6) 1.8E-5(8.2E-6) 2.4E-5(1.1E-5) 2.0E-5
E-Search-1000 1.4E-3(6.7E-4) 1.8E-3(8.9E-4) 1.6E-3(7.8E-4) 1.4E-3(6.8E-4) 1.5E-3(7.0E-4) 1.5E-3(7.0E-4) 1.5E-3

A-Search-5 7.1E-5(3.5E-5) 6.6E-5(3.4E-5) 2.7E-5(1.3E-5) 4.8E-5(2.4E-5) 7.2E-5(3.6E-5) 5.3E-5(2.7E-5) 5.6E-5
A-Search-10 9.2E-5(4.4E-5) 9.8E-5(4.9E-5) 1.3E-4(7.1E-5) 9.6E-5(4.9E-5) 1.1E-4(5.2E-5) 7.0E-5(3.4E-5) 1.0E-4
Parametric 5.2E-6(1.8E-6) 4.5E-6(1.7E-6) 4.9E-6(1.7E-6) 5.2E-6(1.8E-6) 4.5E-6(1.7E-6) 4.9E-6(1.7E-6) 4.8E-6

kernel 2.0E-1(1.6E-1) 1.1E-1(8.0E-2) 1.2E-1(8.7E-2) 1.1E-1(8.1E-2) 1.1E-1(8.1E-2) 1.1E-1(7.9E-2) 1.3E-1
k-NN 3.7E-3(2.6E-3) 3.7E-3(2.6E-3) 3.7E-3(2.6E-3) 3.7E-3(2.6E-3) 3.7E-3(2.6E-3) 3.7E-3(2.6E-3) 3.7E-3

Vicinity 2.3E-3(1.7E-3) 2.1E-3(1.5E-3) 2.3E-3(1.6E-3) 2.2E-3(1.6E-3) 2.4E-3(1.7E-3) 2.5E-3(1.8E-3) 2.3E-3

Table 5: Normalized runtime for classification of artificial distributions when methods were re-
stricted to use a single boundary. Standard error is shown in parentheses.

Although they are among the fastest methods, the low accuracy achieved by all binning methods
and the difficulties in determining a proper bin size and smoothing window size makes them appear
the least suitable of the considered methods.

The parametric method is the quickest of all considered methods and constitutes a very good
choice, if the involved distributions can be approximated well by normal distributions. However,
without prior knowledge about the types of distributions involved in classification, the parametric
method seems to be a risky choice. The kernel method seems even less suitable suffering from the
same problem but being slower than the parametric method.

The E-search-10 and the A-search-5 both suffer from low precision in searching for suitable
boundaries: Both methods cannot rival their higher precision counterparts (E-search-1000 and A-
search-10, respectively) in terms of accuracy. Although they are faster than their higher precision
counterparts, the loss of accuracy is too big in most situations to justify the use of the E-search-10
or the A-search-5.

The vicinity search appears to be a reasonable method: It achieves good accuracies without
requiring too much time. Nevertheless, it is outperformed by the only slightly slower k-NN on all
6 pairs of distributions.

The most promising methods are the E-search-1000, A-search-10, and the k-NN. The E-search-
1000 achieves the highest accuracies in cases where the number of boundaries is estimated cor-
rectly, but is several orders of magnitude slower than the other two. The A-search-10 performs
slightly worse than the E-search-1000, but is the quickest of all three methods. The k-NN also
performed only slightly worse than the E-search-1000 while being considerably faster. In contrast
to the search methods, (a) the runtime of the k-NN depends strongly on the number of samples that
need to be classified and (b) its performance does not rely on successful estimation of the number
of required decision boundaries.
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Consequently, which method constitutes a good choice, depends on the properties of the situa-
tion at hand. If, besides accuracy, speed is of similar importance, the k-NN (if few samples have to
be classified) or the A-search-10 (if many samples have to be classified) seem more suitable than
the E-search-1000. If the distributions can be assumed to be approximately normal, the parametric
method appears to be a viable choice. If distributions are of unknown type and / or there is a sub-
stantial chance of incorrectly estimating the number of required boundaries, the k-NN seems to be
the most suitable method.

Against this background, an important question is what kind of (pairs of) distributions arise
when the PBCM is applied to actual cognitive models. We now turn to this question by presenting
and discussing simulations employing existing cognitive models.

5 Cognitive Models

In our second set of simulations, we applied the methods to distributions arising from 7 pairs of
existing cognitive models.

For each pair of models A and B, we first generated two distributions distA and distB as de-
scribed in Section 2. In a second step, 200 additional GOF differences were produced by generating
100 data sets from model A and 100 data sets from model B and fitting both models to these data
sets. We will refer to these additional GOF differences as test differences. Each method was em-
ployed to classify the 200 test differences, given the two distributions distA and distB . To gauge
method performance, the number of times a method allowed to make a classification, classification
accuracy, and runtime were measured.

For fitting the models, a variant of the Metropolis algorithm (e.g., Madras, 2002) was employed.
For generating data from the models (both for establishing test differences and for establishing
distA and distB), model parameters were drawn randomly from the range of valid parameter
values according to a uniform distribution (see Sections 5.1.1 – 5.1.3 for parameters and their
ranges for the different model pairs).

Performance of the classification methods may vary widely across different modeling situ-
ations. To take this into account, we examined method performance for three different sets of
models and, for each model pair, across 54 different modeling situations. The model sets were
chosen to cover a range of different types of models: The first set comprises three mathematical
models in the domain of memory retention (Section 5.1.1). The second set comprises two symbolic
models in the domain of artificial grammar learning (Section 5.1.2). The third set comprises three
connectionist models in the domain of perceptual choice (Section 5.1.3). The 54 different model-
ing situations were created by varying four factors that we assumed to vary across actual modeling
situations. The first factor is the tightness of fit: We operationalized this factor by varying the
number of swaps used in the Metropolis algorithm: 10, 100, or 1000. The second factor also has
three levels and concerns how many data points are available in each generated data set (NDP ).
The operationalization of this factor is model set-dependent and will be discussed when describing
each model set. The third factor, called noise level (NL) controls how noisy the generated data
are. As NDP , NL has three levels that are model set-specific. The fourth factor, NBS, concerns
the number of samples that constitute distributions distA and distB . Our simulations employed
NBS = 100 and NBS = 1000.

5.1 Model Sets

5.1.1 Memory Models

The three memory models we employed (M1,M2, and M3, see also Pitt & Myung, 2002) predict
the probability of recalling any of a set of learned items after time t according to the following
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formulas:

M1 :(1 + t)−a, a ∈ [0, 2],

M2 :(b+ t)−a, a ∈ [0, 2], b ∈ [1, 2],

M3 :(1 + bt)−a, a ∈ [0, 2], b ∈ [0, 2],

where a and b are free model parameters the value of which was restricted to the corresponding in-
tervals during simulations. These three models yield three pairs of models, (M1,M2), (M1,M3),
and (M2,M3). Each method was applied to each of these three pairs across all of the 54 modeling
situations mentioned above.

To generate data from any of the models, the model was first used to predict recall probabilities
for a number of times, t1, . . . , tNDP . These times were equidistantly distributed across the interval
[0.1, 8.1] using three different levels of number of times: NDP = 5, NDP = 20, and NDP =
100. The obtained probabilities served as the basis for sampling the number of recalled items from
a binomial distribution for each of the NDP -many times. The maximum number of times that
could be recalled was also varied in three levels to manipulate the amount of noise in the generated
data. We used NL = 10, NL = 100, and NL = 1000 to simulate high noise, moderate noise,
and low noise data sets, respectively. Models were then fit to the noisy data sets to generate GOF
differences for building distA and distB as well as the test differences.

5.1.2 Artificial Grammar Learning Models

The symbolic model pair was used to simulate learning of letter strings from four lists of strings
employed in Miller (1958). Each of the four lists contained 9 strings consisting of at least 4 and
at maximum 7 letters from the set {S, X, G, N}. For two of these lists the strings were randomly
assembled. The other two lists contained strings that were constructed from an artificial grammar
and, thus, contained some regularities.

The models had to learn the strings from the lists by being repeatedly presented all strings
from a list. After each complete presentation of a list, the number of strings the model had learned
was determined. If, for example, a random list and a grammar list were presented 10 times each,
this yielded 20 data points: 10 numbers of learned items for each of the two lists. To vary how
many data points are available, we manipulated the number of lists and the number of repetitions:
NDP = 4 was realized by using one grammar list and one random list with two repetitions each;
NDP = 20 was realized by using one grammar list and one random list with 10 repetitions each;
NDP = 60 was realized by using both grammar lists and both random lists with 15 repetitions
each. The amount of noise was varied by manipulating the number of model runs we averaged
across: NL = 5, NL = 30, and NL = 100 runs were used for the high, moderate, and low noise
conditions, respectively.

The two models that we considered are the competitive chunking model (CC) proposed by
Servan-Schreiber and Anderson (1990) and the PARSER model (Perruchet & Vinter, 1998; Per-
ruchet & Pacton, 2006). The CC model has two free parameters, a competition parameter c and a
decay parameter d. In our simulations, c was from the interval (0, 3) and d was from the interval
(0, 1). The PARSER model has four parameters, the learning rate m, a decay parameter f , an
interference parameter i, and a threshold t. Parameter values were from the interval (0, 2), (0, 1),
(0, 0.5), and (0, 3) for m, f, i, and t, respectively.

5.1.3 Perceptual Choice Models

The third model set comprised three connectionist models, all of which were variants of the leaky,
competing accumulator (LCA) model proposed by (Usher & McClelland, 2001). The LCA con-
sists of a set of units that receive sensory information from the environment. The units represent
different conflicting interpretations of an available stimulus and the environmental input represents
the perceptual evidence for the different interpretations. The activation of the units in the LCA is
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not only influenced by the input but also by mutually inhibitory connections between the units. The
change in activation of each unit is determined as follows:

c′i(t) =

inpi(t)− leak ∗ ci(t)− inh ∗∑
k 6=i

ck(t)

 ∗ h
τ

+ ξ ∗
√
h

τ
,

where c′i(t) is the change of activation in unit i at time t, ci(t) is the activation in unit i at time
t, inpi(t) is perceptual evidence at time t, leak is a factor which determines how quickly a unit’s
activation will decrease to its resting level when inpi(t) is zero, inh is the strength of the inhibitory
connections between units, h is the step-size used for numerically solving the differential equation,
τ is a time-scale factor, and xi is a Gaussian noise term with mean zero. If the activation of one
of the units grows beyond a certain threshold t, processing stops. The selected interpretation is
assumed to be that interpretation, which is represented by the unit that exceeded the threshold.

In the simulations, inpi was from the interval [0, 1] subject to the constraint that
∑

i inpi = 1,
leak was from the interval [0, 1], inh was from the interval [0, 2], the standard deviation of the
noise term ξ was from the interval [0, 1], t was from the interval [0, 3], and h = τ = 100 were
fixed.

The LCA was complemented by two additional models that arise from slight modifications of
the LCA. The first modification eliminated any inhibitory connections between units (inh = 0)
and the second modification assumed no leakage (leak = 0). We term these models the leaky
accumulator (LA) model and the competing accumulator (CA) model, respectively. The models
were used to simulate perceptual choice in the task employed by (Vickers, 1970). We ran the
models multiple times in each of the task’s 6 conditions to obtain corresponding response time
distributions. Sets of quantiles of the distributions served as the data points when generating GOF
difference values.

To vary the number of data points, we manipulated the number of quantiles that were computed
from the distributions. For each condition, we either considered only the median (yieldingNDP =
6) or the quartiles (yielding NDP = 18) or the 10%-quantiles (yielding NDP = 54). The level
of noise was controlled by the number of model runs: NL = 150, NL = 1500, and NL = 15000
runs were used for realizing levels of high, moderate, and low noise, respectively.

5.2 Results and Discussion

Simulation of existing cognitive models allowed assessing (a) our hypotheses on distributions aris-
ing in the scope of the PBCM and (b) the performance of the classification methods on actual
model-generated distributions. We first consider distribution properties in Section 5.2.1 before
examining method performance on the different model sets in Sections 5.2.2 – 5.2.5.

5.2.1 Distribution Properties

Because the distributions from situations with NBS = 1000 allow for more reliably assessing
distribution properties, we restricted testing our hypotheses on distributions to these situations (27
of the 54 situations for each model pair). To further increase reliability, we combined the 1000
samples of each distribution with the 100 test differences generated for each distribution in each
pair. Given the 7 model pairs considered in our simulations, this yielded 7 ∗ 27 = 189 pairs of
distributions, where each distribution comprised 1100 GOF differences.

Hypotheses 1 and 2 The first two hypotheses (see inequalities (1) and (2) in Section 2.1) state
that each model tends to fit its own data at least as well as the other model’s data. To examine these
hypotheses, we conducted one-tailed Mann-Whitney-U tests (Mann & Whitney, 1947) that pitted
our hypotheses against the alternative that a model tended to fit its own data worse than the other
model’s data. This involved 189 U tests for each of the two hypotheses: For each model of each
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Figure 3: Distribution of GOF values (Mean Squared Error) when fitting a model’s own data and
when fitting a competing model’s data. a) Memory model M3 fitting its own data and fitting M1’s
data; b) LCA fitting its own data and fitting CA’s data; c) CC fitting its own data and fitting Parser’s
data.

model pair a test was conducted for each of the 27 situations. Given the large number of tests, the
level of significance, α, was Bonferroni-corrected to α = 0.00026 ≈ 0.05/189.

For 17 and 9 pairs of distributions we found a statistically significant violation of our first and
second hypothesis, respectively. This means that the distributions obtained from the simulation of
existing cognitive models contradicted our assumption that a model tends to fit its own data better
than the other model’s data in 26 of 378 cases (i.e., in 6.9% of all cases). Of these 26 cases, 9 arose
from the pair (M1, M3) of the memory model set such that in all of these cases M3 tended to fit
its own data worse than the data of M1. This tendency was not very strong in the sense that the
percentage of GOF values, for which gofxM1

M3 > gofxM3
M3 held, remained below 58% for all 9 cases

(see Figure 3a for an illustration of the most extreme case).
Another 4 cases violating our first hypothesis arose from the pair (LCA, CA) of the percep-

tual choice model set: The LCA model tended to fit its own data worse than the data of the CA.
Again this tendency was not very strong yielding between 55% and 63% of GOF values, for which
gofxCA

LCA > gofxLCA
LCA held (see Figure 3b for an illustration of the most extreme case).

The remaining 13 cases contradicting our first hypothesis arose from the artificial grammar
learning model pair (CC, PARSER): The CC model tended to fit its own data worse than the data
of the PARSER model. This tendency was much stronger than in the other two model pairs. The
percentage of GOF values, for which gofxPARSER

CC > gofxCC
CC held, were close to 90% with the

highest amounting to 95% (see Figure 3c for an illustration of this case).
In sum, we found few violations of the first two hypotheses and all of the few cases that were

evident arose from situations in which a more complex model generated data that was harder to fit
for itself than the data of the other (simpler) model. Thus, our simulations suggest that the first two
hypotheses hold most of the time, and that if they do not hold, it is for the more complex model.

Hypothesis 3 The procedure to check the third hypothesis (see inequality (3) in Section 2.1)
was very similar to the procedure employed for the first two hypotheses. We conducted one-tailed
Mann-Whitney-U tests (Mann & Whitney, 1947) that tested our hypotheses against the alternative
that GOF differences obtained on data generated by the first model in each model pair tended to be
smaller than GOF differences obtained on data generated by the second model in each model pair.

The resulting 189 U tests found no evidence of a violation of our third hypothesis (all ps> 0.65;
180 ps > 0.999). This indicates that the relation of the bulk of the GOF difference distributions
arising from the model pairs employed in our simulations is as expected based on the considerations
in Section 2.1.

Hypotheses 4 and 5 That the relation of the bulk of the distributions follows the expectations
formulated in hypothesis 3 does not rule out that distributions may be nested. Even if, for example,
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Figure 4: Nested pairs of GOF difference distributions for perceptual choice models. a) CA nested
in LA; b) CA nested in LCA

the bulk of distA lies to the right of distB , it is possible that regions left of the bulk of distB exist
where the probability density of distA is higher than the density of distB . Hypotheses 4 and 5 (see
inequalities (1) and (2) in Section 2.1) formulate the expectation that such situations should rarely
(if ever) occur.

To check whether the GOF difference distributions from our simulations contradicted the last
two hypotheses we proceeded as follows. First we investigated for all 189 pairs of difference
distributions whether the distributions appeared to be nested, that is, whether the range of one of
the distributions completely spanned the range of the other distribution: 67 of the 189 distribution
pairs were found to be nested. For each of these nested pairs only one tail of the nesting distribution
potentially contradicts our last two hypotheses. If distA / distB is the nesting distribution, only the
left / right tail constitute a possible contradiction to our hypotheses.

In the second step, we computed the number of GOF differences that constituted a possible
contradiction to our hypotheses. Across the 67 nested pairs the number of critical GOF differences
ranged from 1 to 29 with a mean of 6.06 and a standard deviation of 7.99.

Third, we investigated which of these number of critical differences was statistically reliable.
To do so, we estimated the probability of obtaining GOF differences from the nesting distribution
that are more extreme than the most extreme value of the nested distribution. If, for example, distA
was the nesting distribution and 2 GOF differences from distA were smaller than the smallest GOF
difference from distB , we estimated the probability to be 2

1100 . If hypothesis 4 were correct, the
probability of obtaining a GOF difference from distB , which is smaller than the actually observed
smallest difference from distB , is at least as high as the probability estimated for distA. Accord-
ingly, the probability to observe no GOF differences from distB in this range can be approximated
as (1 − 2

1100)1100 ≈ 0.135. In this way, for all nested pairs, we computed the probability of not
observing GOF differences in the critical range from the nested distribution assuming that our hy-
potheses hold. A Bonferroni-corrected α = 0.05/67 ≈ 0.00075 was used to determine whether a
nested pair reliably contradicted one of our last two hypotheses.

Using this criterion, 15 of the 67 nested pairs constituted statistically significant contradictions
to either hypothesis 4 or hypothesis 5. For these 15 pairs, the number of critical GOF differences
ranged from 9 to 29 with a mean of 19.6 and a standard deviation of 6.21. All of the 15 pairs arose
from the perceptual choice model set: 8 arose from the pair (LA, CA) and 7 from the pair (LCA,
CA). The histogram of the most extreme case for pair (LA, CA), 29 critical GOF differences, is
shown in Figure 4a. The histograms of the most extreme cases are shown in Figure 4.

The analyses of several hundred pairs of distributions arising from our simulations lent support
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Figure 5: Results for memory retention models.

to the 5 hypotheses formalized by inequalities (1) – (5) (see Section 2.1). Although some of the
distribution pairs contradicted hypotheses 1, 2, 4, and 5, such contradicting pairs were rare (7%
and 8% for hypotheses 1, 2 and 4, 5, respectively) and deviations from the expected distribution
properties was generally weak. Accordingly our analyses suggest two main conclusions: First,
the by far most common relation between distA and distB is the one shown in the left panel of
Figure 1. Second, even if distributions are nested, ignoring this nestedness will not strongly impact
classification accuracy, because only very few GOF differences from the nesting distribution lie in
the critical region.

5.2.2 Memory Retention

To assess the methods’ performance we computed, for each method, model pair, and situation,
(a) the percentage of correct classification for cases when a classification was possible, (b) the
percentage of CS cases, and (c) normalized runtime.

For each of the three measures, the first, second (median), and third quartiles (and associated
standard errors) were determined (a) for each method and model pair across all situations as well as
(b) for each method across all model pairs and situations. Since method performance was similar
across the different model pairs we present and discuss results collapsed across pairs in this section.
Results for each model pair individually are provided in Appendix A.

Figure 5 displays the quartiles of the classification accuracy, percentage of CS cases, and run-
time for the different methods. The vicinity search method is the only one that exhibits a noticeable,
though small, number of CS cases. Note, however, that the error bar associated with the third quar-
tile of the k-NN indicates that this method also occasionally yielded a few CS cases. All other
methods did not encounter any situations in which they were unable to classify the test differences.

Normalized performance varied considerably across methods. All binning methods perform
worse than all other methods. This is particularly clear for Bin, Bin-5, and Bin-9; it is less ex-
treme but still noticeable for Bin-3. The next best performing group of methods are the kernel
method, the parametric method, and the E-search-10. All three of these perform on a similar level:
Clearly better than the binning methods, but also clearly worse than performance of the remain-
ing 5 methods. These 5 methods, the vicinity search, the k-NN, the A-search-5, the A-search-10,
and the E-search-1000 all show similar performance for the median, and the third quartile. More
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Figure 6: Results for artificial grammar learning models.

marked differences mainly exist for the first quartile: The vicinity search, the A-search-10, and, in
particular, the A-search-5, perform worse than the k-NN or the E-search-1000. The reason for the
performance drop in some situations is likely due to the chance of getting stuck in local minima
(A-search, see Section 3.3) and the fixed size of the vicinity (see Sections 3.3 and 4.1.1). Conse-
quently, the E-search-1000 and the k-NN performed best of all methods across the three memory
retention model pairs and across the different situations.

Regarding runtime, the boundary methods generally require less time for classification than the
direct methods. The only exception in our simulations was the E-search-1000: The third runtime
quartile for this method was many times higher than for any other method. This high value results
from the quadratic runtime complexity of the E-search when distributions are assumed to be nested
(17 pairs from the memory models were nested, see Section 5.2.1). If only a single boundary had to
be estimated, the E-search-1000 was much faster (see 1st and 2nd quartile) though still slower than
any other boundary method. The second and third slowest boundary methods are the A-search-10
and the A-search-5, respectively. All other boundary methods are extremely quick. Of the direct
methods, the k-NN and vicinity search are much faster than the kernel method, but still a bit slower
than the boundary methods.

5.2.3 Artificial Grammar Learning

Classification accuracy, percentage of CS cases, and runtime for each method on the artificial
grammar learning models are shown in Figure 6.

The results largely mirrored those obtained for the memory model pairs. Vicinity search and
k-NN were the only methods that occasionally yielded a small number of CS cases. Classification
accuracy was worst for all binning methods, medium for the kernel method, the parametric method,
and the E-search-10, and best for the E-search-1000, the k-NN, and the two A-search variants. E-
search-1000 was again the slowest boundary method and the only boundary method that was not
faster than all direct methods. The slowest direct method was the kernel method, followed by the k-
NN and the vicinity search. In comparison to the memory models, runtime of the E- and A-search
methods tended to be lower and less variable across situations, because only two of the distribution
pairs arising from the artificial grammar learning models were assumed to be nested.
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Figure 7: Results for perceptual choice models.

5.2.4 Perceptual Choice

The classification accuracy, percentage of CS cases, and runtime of each method collapsed across
model pairs4 and situations for the perceptual choice models are shown in Figure 7.

As for the memory models and the artificial grammar learning models, vicinity search encoun-
tered a few CS cases, while the kernel method and all boundary methods allowed for a classification
decision in all situations. However, in contrast to the previous model sets, the k-NN exhibited a
large number of CS cases for the perceptual choice models: In many situations, more than half of
all test differences could not be classified by the k-NN and for a substantial fraction of all situations
more than 70% of the test differences constituted CS cases. Interestingly, this large percentage of
CS cases of the k-NN was mirrored by the classification accuracy of this method in the sense that
the k-NN was the only method that clearly and consistently performed above chance. All other
methods were either on or very close to chance level across most situations (all binning methods,
the E-search-10, vicinity search, A-search-5) or only slightly reliably above chance for some of the
considered situations (E-search-1000, the parametric method, the kernel method, A-search-10).

The reason for this performance pattern becomes clear when considering the nature of the
distributions arising from the perceptual choice models. As for the distribution pair shown in
Figure 4b, for most pairs, a substantial number of GOF differences from both distributions and
of the test differences were equal to zero. For the k-NN this high likelihood of zero differences
under both distributions meant that the k = 10 nearest neighbors for a test difference of zero were
all zero for both distributions and, hence, the k-NN was unable to classify any test difference of
zero. In contrast, due to the way the other methods work (see Section 3), they often classified
test differences that were zero. Consequently, on those test differences that were inherently hard
to classify, the k-NN “refused” to take a decision, whereas all boundary methods proceeded with
an – often incorrect – classification.

The runtime results followed the same pattern as the results obtained from the memory model
simulations. The E-search-1000 was the slowest and the other search methods also exhibited con-
siderable variation across the different situations. As for the memory models, this variation across
situations stemmed from many situations that were found to be nested (Section 5.2.1). The runtime

4As for the memory models, method performance was very similar across model pairs. Therefore we decided to
discuss results collapsed across model pairs. Results for each individual model pair are provided in Appendix A
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of the direct methods again places them above all boundary methods except the E-search-1000,
with the kernel method being slowest, the vicinity search being fastest, and the k-NN being slightly
slower than the vicinity search, but faster than the kernel method.

5.2.5 Single Boundary Results

To investigate to what extent the usage of more than a single boundary increases or decreases
classification performance on distribution pairs arising from actual cognitive models, we applied
all boundary methods restricting them to the use of a single boundary to all of the 7 pairs of models.

The single boundary results were virtually identical to the multi-boundary results described
above. Given the great similarity between the two sets of results, we only highlight the few notable
differences in this section. Plots of the single boundary results for each model pair can be found in
Appendix B.

The most pronounced difference concerns the runtime of the E-search-1000 for the memory
models and the perceptual choice models. In the single boundary simulations, runtime of the E-
search-1000 is much lower than for the multi boundary simulations. This difference is due to the
fact that the costly estimation of two boundaries for the memory and perceptual choice model pairs
that were found to be nested (see Section 5.2.1) was avoided. A similar but less extreme reduction
was observable for the other search methods.

A second interesting finding is that both A-search methods achieved slightly better normalized
performance for the perceptual choice model pairs: The third quartile of the A-search-10 / A-
search-5 is now higher / as high as the third quartile of the E-search-1000. This suggests that for
this particular set of models the “local optima” problem of the A-search was aggravated when more
than one boundary had to be estimated.

In sum, there was little evidence that multi boundary and single boundary versions of the meth-
ods differ in terms of their classification performance. However, the runtime of all boundary meth-
ods was – sometimes considerably – reduced when using only a single boundary.

5.2.6 Discussion

The methods’ performance characteristics observed in our cognitive modeling simulations were in
line with and corroborated the observations made in the scope of the artificial distribution simula-
tions.

Regarding classification performance, all binning methods were worse than all other methods.
The E-search-10, the parametric method and the kernel method consistently performed better than
the binning methods, but also often worse than the remaining 5 methods. The vicinity search
and the A-search-5 often achieved good classification performance thus often outperforming the
already mentioned methods. Nevertheless they fell short of the best three methods for both the
artificial grammar learning methods and the perceptual choice models.

As for the artificial distributions, the E-search-1000, the k-NN, and the A-search-10 provided
the best classification performance across all 7 model pairs. For the memory models, these three
models were on par, but for the perceptual choice models and the artificial grammar learning models
the k-NN consistently and reliably achieved the best classification accuracy and the E-search-1000
was slightly better than the A-search-10. The case of the perceptual choice models indicates that
the k-NN was the only method that successfully “restricted” its classification decisions to those
cases where an above-chance classification was possible. In comparison to the k-NN and the E-
search-1000, the A-search-10 performed less robustly across different situations, showing a steeper
increase from the first to the third quartile. However, the A-search-10 was many times faster than
both the k-NN and the E-search-1000 and the k-NN was many times faster than the E-search-1000.

Direct analyses of GOF (difference) distributions corroborated our hypotheses that GOF differ-
ence distributions tend to be non-nested (see left panel of Figure 1). In line with this, the boundary
methods performed virtually identical across the 7 considered model pairs when restricted to using
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only a single boundary. Given that single boundary estimation is associated with – sometimes con-
siderably – reduced runtimes for all boundary methods, our simulation results suggest that single
boundary estimation is to be preferred over multi boundary estimation.

6 General Discussion

Although the performance differences between the candidate methods is of main interest to identi-
fying a suitable classification approach for the PBCM, it is also interesting to consider the absolute
performance achieved across our simulations. An optimal classification accuracy of 100% was
rarely achieved: Only few methods yielded perfect classification performance in only few situ-
ations, and for the perceptual choice model set almost all methods performed close to chance
(Figure 7).

Classification problems that cannot be solved perfectly are not uncommon (see, e.g., Duda et
al., 2001), and our artificial distributions (Section 4) constitute specific examples of such problems.
Nevertheless, the classification performance achieved on the actual cognitive model pairs raises the
question whether (a) the considered models are inherently difficult to distinguish from each other or
(b) the treatment of the model pairs by the PBCM gives rise to unnecessarily difficult classification
problems.

The simulations reported in this article do not allow addressing this question, because they pro-
vide no information on the distinguishability of the models, which is independent of the PBCM.
However, in a related set of simulations also employing the memory retention models (Section 5.1.1),
Schultheis et al. (2013) found that the PBCM may occasionally be outperformed by other model
comparison and selection techniques: Despite employing the classification methods that performed
best in the simulations presented here, the PBCM yielded lower model recovery accuracy than, for
example, the simple hold out method. Thus, it seems that the PBCM may, in certain situations,
give rise to an unnecessarily complex classification problem in the sense that even a good solution
to the problem leads to sub-optimal model comparison and selection performance.

On the other hand, the same study has shown that the PBCM is often superior to employing the
straightforward GOF measure for model selection. By identifying easy to use and well performing
classification methods, the work presented in this paper paves the way for appropriately employing
the PBCM to obtain such superior performance.

7 Conclusion

Although it will depend on situational details which method should ideally be applied, the k-NN
appears to constitute a good general choice for solving the classification problem associated with
applying the PBCM. Of all considered methods, the k-NN performed best across the 6 artificial
distribution pairs as well as across the 7 pairs of actual cognitive models. Furthermore, the k-
NN, being a direct method, can, in principle, deal with situations requiring an arbitrary number of
boundaries without the necessity to make any (incorrect) assumptions on the required number of
boundaries. In addition, the k-NN was the only method that successfully avoided classifying test
differences that could not be classified substantially above chance. A potential drawback of the
k-NN is its runtime, which scales with the number of test differences that need to be classified. If a
large number of differences need to be classified and the time required for classification is critical
(e.g., in the scope of simulation studies such as the one of Cohen, Sanborn, & Shiffrin, 2008),
other methods that work more quickly may be preferable. Of the quicker methods, the A-search-
10 constitutes an appealing general choice: It is many times quicker than the k-NN and was also
among the three top performing methods of those considered. If more specific information on the
nature of the involved distributions is available, other methods may be preferable over both the
k-NN or the A-search-10. For example, if the involved distributions are known to be normal or
close to being so, the parametric method provides a very quick and accurate solution.
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Our simulations also support the conclusion that the relation between distributions arising in
the scope of the PBCM are not arbitrary: The obtained GOF difference distributions tended to
be non-nested such that the bulk of one of the distributions lies to the right of the bulk of the
other distribution. Whether there are any constraints on the shape of the difference distributions,
however, remains an open question. While some model pairs (perceptual choice models) gave
rise to distributions that could be reasonably approximated by normal distributions, other model
pairs produced clearly non-normal distributions (memory models and artificial grammar learning
models). Future work is required to more closely examine possible relations between the properties
of the involved models and the properties of the GOF difference distributions arising from these
models. Another interesting topic for further research concerns the question how differences in
a-priori likelihood of the compared models (e.g., one model is more established) could be taken
into account during classification.
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Appendix

A Results for Individual Pairs of Perceptual Choice and Memory
Models
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B Single Boundary Results for Individual Pairs of Perceptual Choice,
Memory, and Artificial Grammar Learning Models
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