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PREFACE 

THE PROJECT to write the Handbook of Artificial Intelligence was born in 
the mid-1970s, at a low ebb in the fortunes of the field. AI, in our view, had 
made remarkable contributions to one of the grandest of scientific problems­
the nature of intelligence, in humans and in artifacts. Yet it had failed 
to communicate its concepts, its working methods, its techniques, and its 
successes to the broad scientific and engineering communities. The work 
remaining to be done was almost limitless, but the number of practitioners 
was few. If AI were to succeed, it would have to communicate more clearly 
and widely to others in science and engineering. So we thought, and thus 
were we motivated to assemble and edit these volumes. 

In the last few years, we have seen an astonishing change in ·the percep­
tion and recognition of AI as a science and as a technology. Many large 
industrial firms have committed millions of dollars to the establishment of 
AI laboratories. The Japanese have even committed a national project, the 
so-called Fifth Generation, to the engineering of "knowledge information 
processing machines," that is, AI-oriented hardware and software. Newspaper, 
magazine, and broadcast features on AI are common. A lively new professional 
society, the American Association for Artificial Intelligence, has been formed. 
And university graduate-school enrollments in AI are booming. Indeed, Vol­
ume I of the Handbook was the main selection, in August 1981, of one of 
the major book clubs; it is now undergoing its second printing and is being 
translated into Japanese. 

The crisis we face now is a crisis of success, and many wonder if the 
substahce of the field can support the high hopes. We believe that it can, 
and we offer the material of the three massive volumes of the Handbook as 
testimony to the strength and intellectual vigor of the enterprise. 

The five chapters in this volume cover three subfields of AI. Chapter VI, 

on AI programming languages, describes the kinds of programming-language 
features and environments developed by AI researchers. These languages are, 
like all programming languages, not only software tools with which the many 
different kinds of AI programs are constructed, but also "tools of thought" in 
which new ideas and perspectives on the understanding of cognition are first 
explored. Of note here is the extended discussion of LISP--by far the most 
important tool of either kind yet invented in AI. 

Chapters VII through 1X are about expert systems, in science, medicine, 
and education. These systems, which vary widely in structure and behavior, 
all focus on one important methodology, called the transfer of expertise. Early 
in AI's history, researchers agreed that high performance on difficult problems 
would require large amounts of real-world knowledge, the knowledge that a 

XI 



xii Preface 

human expert in a particular domain has extracted from his (or her) experience 
with the problems he solves. The idea of expert-systems research was to find 
ways of transferring the necessary kinds and quantities of knowledge from 
human experts to AI systems. This technology has advanced to the point 
where these systems can perform at the level of human experts and may be 
available commercially in the next few years. 

Finally, Chapter X reviews the area of AI research called automatic pro­
gramming. This research has focused on systems that can produce a program 
from some "natural" description of what it is to do or that attend to some 
other important aspect of programming, like verifying that a program does 
what it was intended to do. For example, some automatic-programming sys­
tems produce simple programs from examples of input/output pairs or from 
English specifications of the program's intended behavior. But there is a much 
deeper purpose to automatic-programming research than just easing the bur­
den of the programmer. To achieve their pragmatic goals, these systems must 
understand programs just as other AI systems understand language or chess or 
medical diagnosis. They must reason about programs and ab6ui; themselves as 
programs, and, as we discuss in Chapter X, this is a central and characteristic 
feature of many AI systems. 
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FUZZY. The most recently developed language included in this study 
illustrates current work in AI programming languages. The design of the 
FUZZY language (Le Faivre, 1977) was motivated by the theory of fuzzy sets 
(Zadeh, 1965; CTupta, Saridis, and Gaines, 1977), a generalization of Boolean 
set theory that allows for "graded" set membership (rather than aU-or-none). 
For many natural-language concepts, for instance, there is no sharp boundary 
between situations for which the concept applies and situations for which it 
does not. Consider, for example, the concept young. We may say that people 
under 10 years of age are young-and those above 60 years are not young. 
However, there i" no particular day at which a person's age switches from 
"young" to "not. young"; rather, this is a gradual transition. In fuzzy set 
theory, the concept of young in this context is expressed by a "membership 
function" . repreEenting the degree to which a person of a particular age can 
be considered to be young. 

Many AI systems deal explicitly with fuzzy information (see, e.g., the cer­
tainty factor in i\1YCIN, Article VIII.Bl), and FUZZY is designed to facilitate 
certain types of reasoning with fuzzy sets. It has been used for various 
AI projects, including the AIMDS/BELIEVER system at Rutgers University 
(Schmidt and Sridharan, 1977) and HAM-RPM, a knowledge-based conver­
sationalist at the University of Hamburg (Wahlster, 1977). 

Logic Programming 

Two languages based on first-order predicate calculus are PROLOG and 
FOL. PROLOG programs consist of "axioms" in first-order logic together 
with a theorem to be proved. The axioms are restricted to implications with 
the left- and right-hand sides in horn-clause form. If the theorem contains 
existentially quantified variables, the system will return instantiations of these 
that make the theorem true (if such exist) using methods developed from those 
of QA3. The style of programming is similar to that demonstrated in QA3 
and, to a lesser extent, PLANNER. Automatic backtracking is used, but the 
programmer Iha~r add annotation to control the order in which- clauses and 
axioms are considered. A compiler has been implemented for PROLOG that 
allows programs in a variety of domains to be executed in about the same 
time as corresponding compiled LISP programs. (See Clocksin and Mellish, 
1981; Warren, Pereira, and Pereira, 1977.) 

Another direetion of logic-the uses of meta-theory-has been explored 
in FOL (Weyrauch, 1979). This program is primarily a proof checker that 
accepts logic statements and proof-step commands that can be carried out and 
tested for correctness. However, it provides a powerful theory-manipulating 
structure that allows the building of arbitrary meta-theory. Thus, for exam­
ple, a theorem may be proved not only within a theory but also with the help 
of the meta-theory. Proving a theorem by going through the meta-theory 
corresponds closely to executing a procedure to produce the theorem. 
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FUZZY 

Much like PLANNER, the programming language FUZZY maintains a 
database of assertions. However, FUZZY assertions include a Z-value indicat­
ing the degree of certainty, for example, ((CHANCE OF RAIN) . 0 . 30). FUZZY 
maintains an associative network of assertions quite similar to that of PLAN­
NER and CONNIVER. Any arbitrary LISP list structure may be entered into 
this net. In addition, an assertion may have a Z-value associated with it, 
if desired. The Z-value of the assertions can be used to control success and 
failure of retrieval or subsequent actions. 

FUZZY has a context mechanism that activates and deactivates associative 
nets of assertions. It is also possible to save the state of the entire system 
in order to allow for later restoration. Functions are available to compute 
differences between states and to add differences to a state. State changes can 
be set, if desired, so that they cannot be undone by a subsequent restoration. 
This feature is useful to control backtracking. Several FUZZY primitives exist 
in backtrackable and in finalizing versions to give the programmer easy control 
over the global control mechanisms. 

Summary 

Data types. The languages vary considerably in the number and kinds 
of data types they offer. Basic LISP is at one extreme: It began with exactly 
one data type, with a few supplementary ones added later. Advantages of 
a sparse set of data types accrue mostly to the writers of LISP compilers 
and interpreters, whose job is simplified because there are fewer operations 
and less need for type conversion. Also, the relatively small compilers and 
interpreters that are produced help conserve available core space. From the 
user's point of view, however, there is little to recommend such a small set of 
data types, except that it (almost) removes the need for type declarations. 

Later versions of LISP, such as INTERLISP and MACLISP, and to an even 
greater extent the languages QLISP and POP-2, have provided ri-ch sets of 
data types and the access functions that go with them. Programming is 
easier because the data structures can more closely mirror the programmer's 
ideas, and type checking becomes available. Efficiency is improved because 
the standard data types can be implemented closer to the machine level than 
equivalent structures built of more primitive units. For example, a SAIL or 
POP-2 record uses fixed-offset fields and avoids the overhead of the pointers 
needed in an equivalent LISP list structure. 

A related issue is whether to allow user-defined data types. The advan­
tages are similar to those of having many data types, but when user-defined 
data types have been allowed, as in POP- 2, they have not found great utility. 
Probably the main reason is simply the extra effort required from the user 
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database update is done. Demons that are waiting for such a message will be 
activated, simulating a direct activation of demons by the database update. 

Coroutining is a special case of multiprocessing, in which only one process 
is active at any time. The coroutining primitives CREATE, TERMINATE, 

ACTIVATE, and SUSPEND can all be implemented using SAIL's message-passing 
mechanism. 

POP-2 

The POP-2 control structure is much like that of LISP. The basic language 
is very simple, partly in the interests of fast compilation, and contains none 
of the specialized AI control structures found in PLANNER, CONMVER, 
and QLISP. Some of these features, including coroutines and multiprocessing 
primitives, · are available in POP-2 libraries. The POPLER library (Davies 
et al., 1973) implemented the spaghetti stack, backtracking, database demons, 
and pattern matching in the manner of PLANNER: 

The basic POP-2 language does provide for the use of generators to 
construct dynamic lists. The programmer defines a function of no arguments, 
say, F, and applies the POP-2 function FNTOLIST to F. The result is the list 
LF of values that F produces on successive calls. Of course, F has to read 
and change a free variable, r~presenting the state of the generation, or else 
every element of LF would be the same. Now comes the interesting part. The 
program can operate on LF just as on ordinary (static) lists. But, in fact, LF 

is not all there; it starts empty and new elements are added onto the back of 
it only as needed. This means that LF can be conceptually very large or even 
infinite, and it does not matter so long as only the initial part of it is used. 

Dynamic lists allow the programmer to abstract away from the details 
of how a list is produced, whether it is computed once and for all or is 
extended when needed. Similarly, the memo function allows abstraction from 
the details of how a function is computed. Memo functions are provided by 
one of the POP-2 libraries. The name comes from the notion that a function, 
if it is called several times with the same argument, would do better to "make 
a memo of it" (the answer) and store it in a lookup table. 

FUZZY 

FUZZY procedures have a more general global-control mechanism than 
PLANNER theorems have. The procedure demons are given control not 
only upon failure of an expression (as in MICRO-PLANNER) but also after 
successful termination of a top-level expression. This makes it possible to 
evaluate globally the results returned by the expressions of a procedure. 
With each procedure a variable is associated that maintains an "accumulated 
Z-value" for the demon's calculations. The procedure demon is called a 
last time when the procedure is exited in order to make any necessary final 
computations (e.g., concluding statistics). 
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There are several levels at which information is accessed in a knowledge 
base: 

1. Explicitly available information is requested. 

2. An explicit procedure is invoked to retrieve the desired information. 

3. A goal is specified and the system is left to decide how to achieve it. 

All three methods are possible in FUZZY: 

1. The FETCH statement retrieves assertions that are explicitly stored in 
the associative net by pattern matching. 

,2. FUZZY procedures can be called by name. 

3. If FUZZY procedures have been stored in the associative net, they can 
be invoked by pattern matching through the DEDUCE statement. This 
relieves the programmer of keeping track of which particular procedures 
may be used to achieve a certain task and allows the easy addition of 
new procedures to the associative net that can be utilized automatically 
by existing programs without change. 

4. The GOAL statement combines the FETCH and DEDUCE statements. 
It first checks whether the desired information is explicitly available in 
the net of assertions. If it fails, it then attempts to deduce the goal by 
invoking DEDUCE procedures that match the specified pattern. 

In addition, FUZZY supports ASSERT and ERASE procedures, which are 
invoked automatically when assertions of cortesponding patterns are added 
and removed, respectively, from the associative net. 

The following program illustrates how FUZZY may deal with both vague 
and incomplete information. The vagueness is expressed here by Z-values 
associated with assertions. Incomplete information in this example is mani­
fested by the absence of useful assertions. This "missing information" does 
not force the procedure into failure, but rather lowers the confidence in the 
result obtained by the procedure: 

=== NET === 
((CHANCE OF RAIN) . 0.8) 
((DRYNESS DESIRED) . 0.7) 
( (BLUE SKY) . 0 . 4) 

=== DEDUCE === 
(PROC NAME: UMBRELLA DEMON : CONFIDENCE (RAIN PROTECTION) 

(BIND ?SK (FETCH ((•OR CLEAR BLUE) SKY))) 
(BIND ?BU (FETCH (BURDENSOME UMBRELLA))) 
(BIND ?DD (FETCH (? DESIRED))) 
(IF (ZAND THRESH: 0.9 (ZNOT !SK) !DD !BU) 

THEN: (SUCCEED @"STAY HOME!") 
ELSE: T) 

(BIND ?CR (FETCH (CHANCE ??))) 
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(IF (MINUSP (DIFFERENCE (PLUS (ZVAL !CR) (ZVAL !DD)) 
(PLUS (ZVAL !SK) (ZVAL !BU)))) 

THEN: (SUCCEED @"DON'T TAKE UMBRELLA" ZACCUM) 
ELSE : (SUCCEED @"TAKE UMBRELLA" ZACCUM))) 

=========== 
(DEFPROP CONFIDENCE 

(LAMBDA (RESULT THRESHOLD C-LEVEL) 
(COND [(EQ RESULT FAIL) (COND [(•GREAT C-LEVEL 0 .25) 

(DIFFERENCE C-LEVEL 0.25)] 

EXPR) 

[T (FAIL)])] 
[(EQ RESULT DONE) C-LEVEL] 
[(•LESS (ZVAL RESULT) THRESHOLD) (FAIL)] 
[T C-LEVEL] ) ) 

(; RESULT = result of last top-level expression 
THRESHOLD = criterion for forcing procedure to fail 
C-LEVEL = current confidence level) 

55 

The program listing includes the associative net, containing some declara­
tive knowledge about a potential umbrella carrier and his situation. Next is 
the procedural associative net containing a DEDUCE procedure to give advice 
whether or not to carry an umbrella in a given situation. Finally, there 
is a LISP procedure that is used by the DEDUCE procedure UMBRELLA as 
a procedure demon. The procedure UMBRELLA uses assertions and their 
modifiers to calculate the projected payoff for carrying an umbrella. The 
demon CONFIDENCE watches this calculation and determines a confidence 
measure for the result obtained by UMBRELLA. This is done as follows. 
UMBRELLA looks for four types of assertions in the associative net: 

1. information about the blueness or the clearness of the sky, 

2. information about the burden of carrying an umbrella, 

3. information about a desired goal that can be satisfied with an umbrella, 
and 

4. information about the chance that an event would o.ccur that would 
make an umbrella desirable. 

The most reliable advice can be given by UMBRELLA if all four pieces of 
information can be found. If a piece of information cannot be found (i.e., if the 
corresponding FETCH returns FAIL), the demon reduces the confidence level 
ZACCUM, which is returned as the Z-value of UMBRELLA. Observe that the 
Z-value can be used in a single program to do different kinds of qualifications. 

Summary 

In the chronological sequence PLANNER, CONNIVER, QLISP, we observe 
an increase in the variety of control structures and in the programmer's access 
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These interact in a manner best shown by example: 

FOREACH X, Y SUCH THAT X IN AnimalSet AND Gregarious(X) AND 

Desert(Y) AND Range Q9 X== Y DO PRINT(X); 
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The conjunctive conditions in the FOREACH statement are processed left to 
right. In this example, a set-membership pattern is leftmost, so the system 
chooses some X in the set AnimalSet. Then X is tested to determine whether it 
satisfies the predicate GREGARIOUS (just a Boolean function). If GREGARIOUS 

returns FALSE, another X in AnimalSet is chosen, but if it returns TRUE, the 
process continues: The matching procedure DESERT generates a Y and the 
database is checked to determine whether Range Q9 X == Y. (If not, another 
DESERT is generated by the matching procedure.) X-Y pairs that meet all 
the conditions are passed on to the action part of the FOREACH statement 
(following the DO), which in this case consists merely of printing X. The net 
effect of this FOREACH, then, is to print out all gregarious animals that live 
in a desert. 

In general, a FOREACH statement can include any number of variables and 
can have any number of conjoined conditions. The ordering or'the conditions is 
critical for efficiency; for instance, if we had put the triple Range Q9 X == Y first 
in our example, the FOREACH statement would first find all appropriate triples 
in the associative database and then try each X-Y pair on the other conditions. 
(A matching procedure, when its variable is already bound, behaves like a 
Boolean function.). If the database includes a large amount of information 
concerning the ranges of animals, this would be highly inefficient. (Note 
that consequent theorems in PLANNER have a similar property, namely, that 
the order in which subgoals are listed can drastically affect the number of 
alternatives examined.) 

POP-2 

The basic POP-2 programming language does not have pattern match­
ing. As with POP-2's control-structure features (Article VI.C3)", the pattern­
matching facilities are provided by various library packages that implement 
facilities similar to those in PLANNER, CONNIVER, and SAIL. 

FUZZY 

As in PLANNER and CONNIVER, a FUZZY variable is assigned a value 
through pattern matching. For example, 

(MATCH (?X ??Y) ((A B) C D)) 
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binds the FUZZY variable !X to (A B) and !Y to (C D). A greater selection of 
functions than in PLANNER and CONNNER is av~ilable for restricting the 
structure of the pattern or the set of items that can match successfully; for 
example, 

C•R ?OBJECT (FETCH (RED !OBJECT))) 

will only match an object that is known to be red. 

Summary 

Once again, in the chronological sequence PLANNER, CONNNER, QLISP, 
we see a general increase in sophistication of pattern matching and the range 
of its applications. PLANNER patterns are used implicitly to fetch assertions 
from the database and to choose a function (theorem) to invoke, but they 
are limited in their structure and cannot be used explicitly to analyze the 
structure of data items. QLISP patterns are, by comparison, very general, 
and much of the language's power depends on them. They serve as a major 
method for analyzing data, not just in the sense of extracting parts, but of 
performing quite complicated tests and searches as well. 

Not surprisingly, pattern matching is expensive. In almost any particular 
case, the pattern~match algorithm will be more general than is really required, 
implying that replacing it with ad hoc code would yield a speedup. When the 
pattern contains segment variables (as in QLISP), the slowdown is especially 
severe. In this connection, it is interesting to note that QLISP is termed 
by its designers (Sacerdoti et al., 1976) a "language for the interactive devel­
opment of complex systems" with the explicit intention that once a QLISP 
program works, the user can convert it to pure INTERLISP. This can even 
be accomplished in stages in the QLISP environment, because QLISP and 
INTERLISP can be freely mixed. 

Some pattern-matching capabilities are not offered in any AI programming 
language. For one thing, all current languages do exact structural matches. A 
very desirable feature would be "best match" capability: Instead of matching 
exactly or failing, the. matcher would do the best it could and return infor­
mation on the points it could not find a match on (see Bobrow and Winograd, 
1977, for speculations along this line). 
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