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A computational approach for comparing qualitative shape descriptions
(QSDs) of objects within digital images is presented. First, the dissimilarity
of qualitative features of shape is measured: (i) intuitively using conceptual
neighbourhood diagrams; and (ii) mathematically using interval distances.
Then, a similarity measure between QSDs is defined and tested using
images of different categories of the MPEG-7-CE-Shape-1 library, images
of tiles used to build mosaics, and a collection of Clipart images. The
results obtained show the effectiveness of the similarity measure defined,
which is invariant to translations, rotations and scaling, and which implicitly
manages deformation of shape parts and incompleteness.
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1 Introduction

Shape is probably the single most significant property that people perceive about
an object. By knowing the shape, the perceiver can predict more facts about that
object (what kind of object it is, what it is used for and so on) than by knowing
any other property (Palmer, 1999).

Formally, the shape of an object can be described by the properties of the ob-
ject’s boundary. A purely quantitative representation of that boundary could be a
set of mathematical functions of the coordinate space, such as a circumference is
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represented mathematically by x2 + y2 = r2. However, the more complex the
shape is, the more complicated is the numerical function that describes its bound-
ary. In these cases, piecewise interpolation methods are typically used; i.e. the
shape of the object is described by approximation using a set of small parts, such
as straight lines or flat surfaces, for which numerical functions may be found. The
set of all the functions represents the quantitative description of the object’s shape.
A widely used alternative to this method is to make a quantitative representation
of the object’s shape as a function of the pixels in the object image (Forsyth and
Ponce, 2003). In this case, however, the result is coarser or finer depending on
the resolution used, because some pixels may be only partly occupied, and it may
also vary considerably if the object is rotated or in different positions in the pixel
grid.

Because of the numerical properties of digital images, most of the image pro-
cessing in computer vision has been carried out by applying mathematical models
and other quantitative techniques to describe and identify the shape of the objects
contained in an image. However, qualitative representations of a shape (i.e. based
on linguistic terms such as circle, curve, acute etc.) are most useful for applica-
tions of AI that involve user communication, as Gottfried (2008) mentions:

‘Interestingly, imprecise descriptions are frequently sufficient, and
in particular, frequently related to the human’s visual system, who can
comprehend such qualitative, imprecise features better than precise
quantitative measurements’

that is a human user can understand more easily what an obtuse angle is rather
than what an angle of 156.74 � means.

Qualitative shape descriptions focus on the relevant and invariant features of
shape that are considered most important within a particular context, including
how many concavities a shape has, whether it has any lines of symmetry, if it
is rectilinear or curvilinear, or if it has any holes, etc. (Galton and Meathrel,
1999). Taking a broader view, the origin of qualitative descriptions is probably
obtaining a high level description of low level inputs. Some of the most rele-
vant works in qualitative shape description are those by: Schlieder (1994); Cohn
(1995); Damski and Gero (1996); Clementini and Di Felice (1997); Gero (1999);
Galton and Meathrel (1999); Leyton (2004); Museros (2006); Gottfried (2009).
All these works provide evidence for the effectiveness of using qualitative in-
formation to describe shapes (for a detailed comparison of these works with our
approach see Museros et al. (2011)).

In this paper, shape description is tackled from a qualitative perspective, in
which a set of values related to a feature of shape is represented with only a qua-
litative tag. The idea of this proposal is to abstract the numerical values, as has
previously been done by Lesher et al. (2000); Lin et al. (2003) and Robinson
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(2007) using the discretisation1 of continuous values. The approach used here for
qualitative shape description of silhouettes of two-dimensional objects was first
outlined in Falomir et al. (2008) and Falomir et al. (2011) as an extension of the
model by Museros and Escrig (2007) and Museros et al. (2011) used to describe
the shape of the edges of the tiles that were automatically assembled into a ce-
ramic mosaic by a robot arm. That earlier model was improved by Falomir et al.
(2008) to reduce the ambiguity in describing all existing 2D objects (not only tiles)
and then it was used in Falomir et al. (2011) to describe the shape of the objects
appearing in any digital image captured by a robot camera. Here, the approach by
Falomir et al. (2008) is defined in a general way that allow adaptation according
to the given application and the AMEVA algorithm (González-Abril et al., 2009)
is used to discretize our qualitative features of shape.

After processing the low level inputs and abstracting them to qualitative or high
level descriptions, an important problem is to obtain a method that quantifies the
resemblance or closeness between these descriptions. Usually these methods are
based on exact matching of descriptions, which can only determine if both de-
scriptions are equally the same or not, or approximate matching, which can obtain
a degree of similarity between both descriptions although they are not equal. The
approach Museros et al. (2011) applied exact matching to find a correspondence
of qualitative shape descriptions. Later, the improved shape description model
by Falomir et al. (2008) was tested on tiles in mosaic assembling by approximate
matching using a simple definition of shape similarity based on conceptual neigh-
bourhood diagrams (Falomir et al., 2010). Here, that earlier similarity method is
improved an tested on different kinds of 2D objects (not only tiles) and an alterna-
tive method based on interval distances is presented and compared to the previous
one. Therefore, an approach for shape similarity calculus is presented in this pa-
per which determines the similarity of qualitative features of shape: (i) intuitively
from conceptual neighbourhood graphs and (ii) mathematically from interval dis-
tances. Then this approach is tested on some image categories from the MPEG-7
CE Shape-1 library, images of tiles used to build mosaics and on Clipart images,
showing the flexibility and adaptability of our approach. The main of our approach
is to obtain a similarity degree between shapes from a cognitive perspective, that
is, which approximates to the human shape similarity assessment, and analysis of
our results dealing with this issue are presented through the paper.

The rest of this paper is structured as follows. Section 2 reviews the litera-
ture on shape similarity methods. In Section 3, the qualitative model used for
shape description is presented. A new approach for shape similarity calculus is
developed in Section 4. Section 5 presents an experimental evaluation. Finally,
conclusions are drawn in Section 6.

1Discretisation is a process of transforming continuous attribute values into a finite number of
intervals and associating a discrete value with each interval.
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2 Literature Review

Shape similarity has been widely studied. In the literature works can be found that
define similarity measures between shapes that are represented by: (i) quantitative
information (Super, 2004; Ling and Jacobs, 2007; Attalla and Siy, 2005; Late-
cki and Lakamper, 2000; Bai et al., 2008; Gdalyahu and Weinshall, 1998; Mori
et al., 2001); (ii) mixed quantitative and qualitative information (Shokoufandeh
et al., 2002; Berretti et al., 2000; Siddiqi et al., 1998; Macrini et al., 2008; Sebas-
tian et al., 2001, 2002) and (iii) qualitative information (Gottfried, 2008; Kuijpers
et al., 2006; Schuldt et al., 2006).

Approaches to shape similarity calculus based on quantitative representations
can be classified into:

• approaches that match points of the shape boundary: Super (2004) defines
critical points of high curvature on boundaries and normalises the shape
to a reference frame for rotation and scaling before calculating a distance
measure used in the matching process; whereas Ling and Jacobs (2007) con-
sider the inner-distance, or the length between landmark points within the
shape silhouette to define shape descriptors invariant to articulation, which
improved the classification of articulated shapes of 2D objects.

• approaches that match segments of the shape boundary: (i) shapes are seg-
mented at multiple resolutions and a similarity is defined by elastic match-
ing of shape segments in the work by Attalla and Siy (2005); (ii) a simi-
larity measure between shapes based on the correspondence of visual parts
where partial matching can be performed when the scale is known is pre-
sented by Latecki and Lakamper (2000) and then it is used for detection and
recognition of contour parts in digital images by Bai et al. (2008); (iii) mul-
tiscale random fields are used by Latecki et al. (2008) for contour grouping
and recognizing shapes when the scale is unknown; and (iv) a local curve
matching algorithm is described by Gdalyahu and Weinshall (1998) that ex-
tracts points of high curvature and calculates a distance between them using
efficient alignment.

• approaches that match the context of the shapes: Mori et al. (2001) define
a shape feature descriptor vector that is used to represent general shape
contour.

Approaches to shape similarity that mix quantitative and qualitative representa-
tions are those based on graphs/trees that usually describe the spatial arrangement
of the shape parts between them but also contain some measurable properties of
each shape part in their edges/nodes. For example: (i) Shokoufandeh et al. (2002)
divide the coarse shape of an object into blobs and geometric relationships be-
tween them are organised into a graph, which is used for shape comparing; (ii)
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a shape is divided into tokens, according to its protrusions, and arranged into an
M-tree, which is used to calculate distances between tokens and to obtain a dis-
similarity measure between the M-trees of two shapes by Berretti et al. (2000);
(iii) shocks (singularities) of a curve on bounding contours are organised into a
graph for shape matching by Siddiqi et al. (1998) and evolve to skeletons2 and
bone graphs for object recognition in the work by Macrini et al. (2008); finally,
(iv) a distance between shock graphs is defined and used for recognition of shapes
in the work by Sebastian et al. (2001) and for retrieval of similar shapes in large
databases in the work by Sebastian et al. (2002).

The most representative approaches to shape similarity based on qualitative
representation can be generally classified as:

• based on qualitative shape descriptors: (i) bipartite arrangements defined
by Gottfried (2008) that relate line segments of a contour of an object to
other parts of that same contour and then a similarity measure between
these qualitative descriptions of shape is given; (ii) matrices of qualitative
concepts developed by Kuijpers et al. (2006) using the double-cross orien-
tation model by Freksa (1992) to describe polylines and to find a similarity
measure between polygons; and finally, (iii) polygons are described quali-
tatively by their scope (calculated as their relative position with respect to
one of their line segments where the double-cross grid described by Freksa
(1992) is located) and scope histograms generated and used for shape com-
paring by Schuldt et al. (2006).

• theoretical approaches: (i) the recognition-by-components theory by Bie-
derman (1987) in which any object can be generated from a set of generalized-
cone components, called geons; (ii) the relational modelling technique by
Shapiro et al. (1980) which decomposes objects into sticks, plates and blobs;
and finally, (iii) the codons by Richards and Hoffman (1985) that are simple
primitives for describing closed 2D shapes.

Finally, it is worth to mention that some invariant feature descriptors and de-
tectors methods (such as SIFT by Lowe (2004), SURF by Bay et al. (2006), SIFT
+ Vocabulary Tree by Csurka et al. (2004), Harris-Affine and Hessian-Affine by
Mikolajczyk et al. (2005), MSER by Matas et al. (2002), etc.), which address the
problem of comparing two digital images, have been applied to object detection,
where the key image contains an object and the other image is an scene with that
object within it. They have become very popular because they can obtain an object
hypothesis location within the scene image in a fast an scalable way by analyz-
ing all the pixels of both raw PGM images and doing mathematical operations on
them. However, they obtain false positives in images containing few textures (that

2A skeleton or axis is a two dimensional arc reflecting some global or local symmetry or regularity
within a shape.
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is, images with simple object shapes, such as web icons, Clipart images, etc.) or
images containing repetitive patterns. And finally, they do not describe and com-
pare object shapes at all and they cannot obtain a similarity index between shapes,
as all the previous mentioned works do.

3 A Qualitative Shape Description

When people describe the shape of an object, we usually distinguish between
straight sides and curved ones, describe angles and their convexity, compare the
lengths of the sides of the object, etc. Hence, these features are the most relevant
ones, from an intuitive point of view, for describing shapes and this is the main
reason why we use them, after they were formally defined in Falomir et al. (2008).
Accordingly, this approach called QSD (Qualitative Shape Description), which is
based on how intuitively human beings describe shapes, is used in this paper.

Given a digital image containing a two-dimensional object, our approach for
Qualitative Shape Description (QSD) automatically extracts the closed boundary
of this object applying an image segmentation method (i.e. the colour segmen-
tation method by Felzenszwalb and Huttenlocher (2004) or the well-known seg-
mentation method by Canny (1986)).

From all the points that define the boundary (N ), a set of relevant points (RPSet)
of the shape is extracted as described in Algorithm 1. The points of a boundary
that are considered consecutive are those separated by a pre-established granu-
larity step(k). If the slope between a point Pi and its consecutive point Pi+k,

Algorithm 1 Extraction of the relevant points of the shape from all the pixels of
the boundary of a 2D object.
N  number of points of the boundary;
k granularity step;
for i = 0 to N � 2k; i = i+ k do

s1  slope(Pi, Pi+k)
s2  slope(Pi, Pi+2k)
if s1 = s2 then

SameSegment  SameSegment [ {Pi, Pi+k, Pi+2k}
else

RPSET  RPSET [ {Pi+k}
end if

end for

denoted by s1, and the slope between Pi and Pi+2k, termed s2, are equal, then Pi,
Pi+k and Pi+2k belong to the same straight segment. If s1 and s2 are not equal,
Pi, Pi+k and Pi+2k belong to different straight segments or to a curved segment.
This process is repeated for a new point Pi+3k and the process stops when all the
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consecutive points of the boundary are visited. P is considered a relevant point
if it is the point at which the slope stops being constant or it is the point at which
the slope changes its sign. Note that the granularity step is set by experimentation
as a function of the edge length of the described object: if the edges are long, the
granularity step will have a larger value; if they are short, the granularity step will
have a smaller value.

Finally, a set of relevant points, denoted by {P0 , P1 ,..., Pn}, determines the
shape of the object. Each of those relevant points P is described by a set of four
features, which are defined below:

<ECp, Ap | TCp, Lp, Cp>

The first feature is the Edge Connection (denoted by EC) and it indicates the
connection occurring at the relevant point P. This feature is described by the fol-
lowing tags:

• line-p-Line(lpL), if the point P connects two straight lines;
• line-p-Curve(lpC), if P connects a line and a curve;
• curve-p-Line(cpL), if P connects a curve and a line;
• curve-p-Curve(cpC), if P connects two curves; or
• curve-p (cp) or p-Curve(pC), if P is a point of curvature of a curve.

If the EC is a line-p-Line, line-p-Curve, curve-p-Line or curve-p-Curve, the
second feature to consider is the Angle (denoted by A) at the relevant point. The
angle is a quantitative feature that is discretised using the Angle Reference System
or ARS = {�, ALAB , AINT } where, degrees (�) indicates the unit of measurement
of the angles; ALAB refers to the set of labels for the angles; and AINT refers to
the values in degrees � related to each label: ALAB = {A1, A2, ...,AKA}, and
AINT = {[0, a1], (a1, a2], ..., (aKA�1, 180]} where KA is the number of labels3.

On the other hand, if the EC is a curve-p or a p-Curve, the second feature is the
Type of Curvature (denoted by TC) at P which is defined by the Type of Curvature
Reference System or TCRS = {�, TCLAB , TCINT }. As it is shown in Figure 1,
the Type of Curvature at Pj is determined by calculating first the point c, which
is the half-point of the line between Pj�1 (initial point of the curve) and Pj+1

(final point of the curve). Next, the distance between Pj�1 and c, named da, and
the distance between Pj and c, named db, are calculated, and finally, the angle
that determines the TC is obtained by Angle(P ) = 2 · atan2(da/db) · 180/⇡ in
degrees (�). In TCRS, TCLAB refers to the set of labels for curvature; and TCINT

refers to the values of degrees (�) related to each label: TCLAB = { TC1, TC2, ...,
TCKTC}, and TCINT = { [0, tc1], (tc1, tc2], ..., (tcKTC�1, 180] } where KTC
is the number of labels.

3The number of labels in this feature and in the other features must be defined in each situation as
it can be seen in Section 5.1.
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The third feature considered is the compared length (denoted by L) which is
defined by the Length Reference System or LRS = {UL, LLAB , LINT }, where
UL or Unit of compared Length refers to the relation between the length of the
first edge and the length of the second edge connected by P, that is, ul = (length of
1st edge)/(length of 2nd edge); LLAB refers to the set of labels for compared length;
and LINT refers to the values of UL related to each label: LLAB = { L1, L2, ...,
LKL }, and LINT = { [0, l1], (l1, l2], ..., (lKL�1, lKL]} where KL is the number
of labels and lKL is the maximum value of the feature L.

The last feature to be considered is the Convexity (denoted by C) at point P,
which is obtained from the oriented line built from the previous point to the next
point and by ordering the relevant points of the shape clockwise. If point Pj is
on the left of the segment defined by Pj�1 and Pj+1, then Pj is convex; otherwise
Pj is concave. For example, as Figure 2 shows: Pj is characterised as convex,
whereas Pj+1 is characterised as concave. Note that mathematically Pj cannot
be within the oriented line from Pj�1 to Pj+1, otherwise it will not be a relevant
point of the shape.

Therefore, the complete description of the shape of a 2D object is given from a
set of qualitative features as follows:

[EC0, A0 | TC0, L0, C0], [EC1, A1 | TC1, L1, C1],... , [ECn�1, An�1 | TCn�1,
Ln�1, Cn�1]

where n is the total number of relevant points of the object, ECi describes the
Edge Connection that occurs at the point Pi, Ai | TCi describes the angle or the
type of curvature at Pi, Li describes the compared length of the edges connected
at Pi and finally, Ci describes the convexity at Pi. The first relevant point to be
described (denoted by P0) is always the one closest to the upper-left corner of the
image and the rest of the relevant points are described cyclically in a clockwise
direction. An example of the general QSD of an object is shown in Table 1.

From a cognitive point of view, shape is defined in the MIT Encyclopedia of
Cognitive Science by Wilson and Keil (1999) (see Shape Perception entry) as:

‘An aspect of a stimulus that remains invariant despite changes in
size, position and orientation.’

Therefore, it is important to note that the QSD presented here is:

• invariant to scaling (expansions and contractions in size). If a shape is
scaled, then all the edges are expanded or contracted in the same propor-
tion, and therefore the features of shape obtained in both situations are the
same. If a shape is expanded or contracted until an edge disappears, then
our approach considers that the original shape is transformed into another
different one because they have different quantity of edges.

8
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• invariant to translations (changes in position), because an object description
is always started at the point closest to the upper-left corner of the image,
and therefore does not depend on where the object is located in the image.

Clearly, the QSD is not invariant to rotations (changing orientation), however
the comparison of two shapes would be invariant to rotation if both shape descrip-
tions were compared considering each point as the possible starting point of the
(cyclic) description. This is one constraint that must be considered when defining
a cognitive similarity measure between shapes described by our QSD.

4 Similarity Between QSDs

With the aim of defining a similarity measure between two QSDs corresponding
to two objects, it is necessary to work through three stages:

• defining a similarity measure between the qualitative features (related to the
shape features Edge Connection (EC), Angle (A), Type of Curvature (TC),
compared Length (L) and Convexity (C)) that describe the relevant points
of each QSD of the objects compared (Section 4.1);

• obtaining a similarity measure between a pair of relevant points: each one
corresponding to the QSD of each compared object (Section 4.2);

• defining a similarity measure between the QSDs of both objects by estab-
lishing a correspondence of pairs of relevant points (Section 4.3).

4.1 Similarity of Qualitative Features

In order to compare the qualitative tags defined for each feature of shape (Edge
Connection (EC), Angle (A), Type of Curvature (TC), compared Length (L) and
Convexity (C)), matrices of dissimilarity values are built:

• for features EC, A, TC, L and C, from a qualitative and cognitive perspec-
tive, using conceptual neighbourhood diagrams (Section 4.1.1); and

• for features A, TC and L (defined using a reference system based on inter-
vals) from a quantitative perspective, using interval distances that are richer
mathematically (Section 4.1.2).

4.1.1 Building Dissimilarity Matrices Using Conceptual Neighbourhood

Diagrams (CNDs)

The possible transformations between two labels that describe a feature can be
defined from its corresponding CND. The term conceptual neighbourhood was
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first considered by Freksa (1991) in his analysis of the 13 interval relations defined
in the temporal logic defined by Allen (1981):

‘Two relations between pairs of events are conceptual neighbours
if they can be directly transformed one into another by continuous
deformation (i.e. shortening or lengthening) of the events.’

Conceptual neighbourhood relations can be found between the qualitative tags
defined for each feature of shape in the QSD model. For example, when dealing
with angles, the qualitative names acute and right can be considered conceptual
neighbours because a quantitative extension of the angle acute leads to a direct
transition to the angle right. However, angles acute and obtuse are not conceptual
neighbours, because a transition between them must go through the angle right
first.

In general, CNDs can be described as diagrams or graphs containing: (i) nodes
that map to a set of individual relations defined on regions or intervals and (ii)
paths or edges connecting pairs of adjacent nodes that map to continuous transfor-
mations between them. From the CNDs defined, a dissimilarity matrix between
qualitative tags represented in each CND can be calculated as the minimal path
between them.

Figure 3 presents the CND for the feature Edge Connection (EC) according
to a bending continuous deformation, in which the qualitative tags that are con-
ceptual neighbours are those that represent only a change from a curve to a line
or viceversa. If a line is changed for a curve and also a curve is changed for a
line the dissimilarity between concepts is 2. The dissimilarity matrix defined for
this CND is shown in Table 2. Note that this dissimilarity measure corresponds
to Levenshtein (1966)’s distance between the abbreviations of the qualitative tags
defined for EC. Levenshtein’s distance (LD) is an editing distance that measures
the amount of differences between two strings. It is defined as the minimum cost
(number of edits) needed to transform one string into another with the allowable
operations: insertion, deletion or substitution of a single character. For instance,
in the case of EC abbreviations, the LD between lpL and cp is 2, because 1 sub-
stitution and 1 insertion are needed, the LD between cpC and lpC is 1 because 1
substitution operation is needed, whereas the LD between lpL and cpC is 2 be-
cause two substitution operations are needed.

The CND for the feature Convexity (C) according to a smashing continuous
deformation is shown in Figure 4 and the dissimilarity matrix defined for this
CND is shown in Table 3.

As the features of shape Angle (A), Type of Curvature (TC) and compared
Length (L) are defined on continuous intervals of values, the general CNDs for
them according to a shortening or lengthening continuous deformation correspond
to those shown in Figures 5, 6 and 7. Their corresponding dissimilarity matrices
are calculated in general from (1), (2) and (3) based on the minimal path between
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the nodes of the CND.

d(Ai, Aj) = |i� j| where i, j = 1 . . .KA (1)

d(TCi, TCj) = |i� j| where i, j = 1 . . .KTC (2)

d(Li, Lj) = |i� j| where i, j = 1 . . .KL (3)

Finally, it is our belief that employing CNDs in this way is plausible and intuitive.

4.1.2 Building Dissimilarity Matrices Using Interval Distances

To define the dissimilarity matrices for the features angle (A), type of curvature
(TC) and compared length (L), an ordinal scale has been used in Section 4.1.1.
However, these features are defined from intervals of values in their Reference
Systems. Therefore, we can take advantage of this by not considering dissimilarity
matrices but instead, distance matrices, which are richer mathematically, because
the concept of distance is stricter than the concept of dissimilarity.

Let us introduce the concept of interval distance. Given an open interval (anal-
ogously for another kind of interval) of finite dimension, there are two main ways
to represent it: from the extreme points as (a,b) (classical notation) or as an open
ball Br(c) (Borelian notation) where c = (a+b)/2 (centre) and r = (b�a)/2 (ra-
dius). Given two intervals, I1 = (a1 ,b1 ) = Br1 (c1 ) and I2 = (a2 ,b2 ) = Br2 (c2 ), a
family of distances between intervals was defined by Gonzalez-Abril et al. (2004),
which depends on three parameters as follows:

d2(I1, I2) = ( �c �r )A

✓
�c
�r

◆
(4)

where �c = c2�c1, �r = r2�r1 and A is a symmetrical 2⇥2 matrix of weights,
which must be a positive definite matrix. From the A matrix, the weights given to
the position of the intervals and to the radius can be controlled.

In this paper we will use the most natural choice for the A matrix, which is the
identity matrix that provides the next distance:

d2(I1, I2) =
p
�2c+�2r =

p
(c2 � c1)2 + (r2 � r1)2 (5)

Hence, new dissimilarity matrices can be built for the features angle, type of cur-
vature and length considering interval distances.

4.2 A Similarity Between Relevant Points

As previously mentioned, the shape of an object is qualitatively described by
means of all its relevant points. Therefore, in order to define a similarity mea-
sure between shapes, first a similarity measure between relevant points must be
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obtained. Hence, given two relevant points, denoted by RPA and RPB , belong-
ing to the shapes of the objects A and B respectively, a similarity measure between
them, denoted by Sim(RPA, RPB), is defined as:

Sim(RPA, RPB) = 1�
X

i2{EC,A,TC,C,L}

wi
ds(i)

Ds(i)
, (6)

where ds(feature) denotes the dissimilarity between relevant points with respect to
the feature obtained from the dissimilarity matrix previously defined. Ds(feature)
denotes the maximum dissimilarity in the dissimilarity matrix related to the fea-
ture considered at the relevant point. Hence, by dividing ds(feature) and Ds(feature)
the proportion of dissimilarity related to feature of RPA and RPB is obtained,
which is between 0 and 1. Moreover, the parameter wfeature is the weight as-
signed to this feature, and it holds that wEC + wA + wL + wC = 1, wA = wTC

and wfeature � 0 for each feature.
In this paper, with the aim of giving the same importance to all features in (6),

all the weights have the same value: 1
4 . Clearly, these weights can be tuned if a

researcher needs to give more importance to one feature over the others. Further-
more, in (6) the dissimilarity value is subtracted from 1 with the aim of providing
a similarity measure.

Hence, 0  Sim(RPA, RPB) = Sim(RPB , RPA)  1 and for each RPA

and RPB . Furthermore, if Sim(RPA, RPB) = 0 this means that ds(feature) =
Ds(feature), that is, both relevant points have the maximum dissimilarity for all
features and thus, both relevant points are as different as possible.

On the other hand, if Sim(RPA, RPB) = 1, then this means that ds(feature) =
0 for all the features of the relevant points, and hence, these two relevant points
have the same QSD. In this case, both relevant points are considered equivalent (a
relation of equivalence is established between them).

If one relevant point is a point of curvature (cp or pC in EC) and the other
compared relevant point is not, the type of curvature (feature TC) of the first rele-
vant point will be compared to the angle (feature A) of the second relevant point.
For instance, in Table 1, if the relevant point A of the shape is compared to the
relevant point B2, the corresponding Angle at A (Angle(A)) will be compared
with the corresponding type of curvature (TC) at B2 (TC(B2)). However, this
is not a problem for our approach because it can compare angles with types of
curvature because both features correspond to the same concept, that is, the angu-
lar amplitude at the relevant point, and both can be defined by the same values in
degrees.

In Section 5.1, the chosen parameters for each feature of shape are given and
all these concepts are exemplified.

12
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4.3 Similarity Between QSDs

In order to compare two shapes A and B whose QSDs have the same number of
relevant points (denoted by n), the similarity between A and B is calculated from
(6) as an arithmetic mean of the similarity between relevant points of both shapes
cyclically in a clockwise direction. Thus, the calculation of the similarity can start
each time at a different relevant point of any of the shapes. When all the possible
similarities between relevant points are obtained, the similarity between A and B
is the highest value of all of them.

Let us clarify this similarity calculus with an example. Let T1 and T2 be two
triangles, with QSDs given by {RPT1(0), RPT1(1), RPT1(2)} and {RPT2(0),
RPT2(1), RPT2(2)} respectively. In this case, three similarities can be considered
(for simplifying, we denote Sim(RPT1(i), RPT2(j)) as Sim(i, j)):

Sim1(T1, T2) = 1
3 (Sim(0, 0) + Sim(1, 1) + Sim(2, 2))

Sim2(T1, T2) = 1
3 (Sim(1, 0) + Sim(2, 1) + Sim(0, 2))

Sim3(T1, T2) = 1
3 (Sim(2, 0) + Sim(0, 1) + Sim(1, 2))

and, the final similarity between both triangles will be the maximum of these three.
It is important to note that this final similarity provides us with a correspon-

dence between relevant points of two shapes that will be useful further on. Thus,
for instance, if the final similarity between the triangle T1 and T2 is given from
the Sim2 (T1, T2), then the correspondence obtained is:

RPT1(1)! RPT2(0), RPT1(2)! RPT2(1), RPT1(0)! RPT2(2)

On the other hand, if two shapes A and B whose QSDs have a different number
of relevant points are compared, then there are some relevant points of one shape
with no corresponding points in the other shape. In this case, the points with no
corresponding pairs in the other shape are compared with a new relevant point,
the void point, and the similarity between both points is zero.

Let us suppose that the number of relevant points of the shapes A and B are n
and m respectively, and without loss of generality that n � m. In this case, n-m
relevant points of A are compared with the void point, and the rest are compared
with the relevant points of B in the same way as in the previous case.

Figure 8 shows two objects, A and B, with 4 and 5 relevant points respectively.
When comparing A and B all the possible correspondences between the relevant
points of these two objects are the following:

{(0,void),(1,0),(2,1),(3,2),(4,3)} , {(0,void),(1,1),(2,2),(3,3),(4,0)}
{(0,void),(1,2),(2,3),(3,0),(4,1)} , {(0,void),(1,3),(2,0),(3,1),(4,2)}
{(0,0),(1,void),(2,1),(3,2),(4,3)} , {(0,1),(1,void),(2,2),(3,3),(4,0)}
{(0,2),(1,void),(2,3),(3,0),(4,1)} , {(0,3),(1,void),(2,0),(3,1),(4,2)}
{(0,0),(1,1),(2,void),(3,2),(4,3)} , {(0,1),(1,2),(2,void),(3,3),(4,0)}

13
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{(0,2),(1,3),(2,void),(3,0),(4,1)} , {(0,3),(1,0),(2,void),(3,1),(4,2)}
{(0,0),(1,1),(2,2),(3,void),(4,3)} , {(0,1),(1,2),(2,3),(3,void),(4,0)}
{(0,2),(1,3),(2,0),(3,void),(4,1)} , {(0,3),(1,0),(2,1),(3,void),(4,2)}
{(0,0),(1,1),(2,2),(3,3),(4,void)} , {(0,1),(1,2),(2,3),(3,0),(4,void)}
{(0,2),(1,3),(2,0),(3,1),(4,void)} , {(0,3),(1,0),(2,1),(3,2),(4,void)}

For the objects in Figure 8, Sim(A,B) is given from the correspondence {(0,0),
(1,1), (2,void), (3,2), (4,3)}. Therefore, our approach provides additional informa-
tion about the shape: RP 2 in object B has no corresponding RP in object A.

Thus, the similarity for each one of all possible correspondences between the
relevant points of A and B by considering the void point is obtained as:

Sim�(A,B) =
1

n

mX

i=1

Sim(RPA�(i), RPB(i)) (7)

where � denotes a cyclic correspondence of the relevant point of object A and the
relevant point of object B.

Note that only m similarities between relevant points must be considered be-
cause the similarity between a relevant point of A and the void point is always
zero. From here, the final similarity between the shapes A and B, called SimQSD(A,B),
is the maximum value of these similarities, that is,

SimQSD(A,B) = max�2C(Sim�(A,B)) (8)

where C denotes the set of all possible correspondences between relevant points
of A and B.

In Algorithm 2, the process followed to calculate the similarity value between
two qualitative shape descriptions (QSD) is described in pseudocode.

The main properties of this final similarity are:

• Symmetry: SimQSD(A,B) = SimQSD(B,A).

• Invariance to rotation, translation and scale transformations;

• Upper and lower bounds, that is,

0  SimQSD(A,B)  m

n
 1

for any shapes A and B, because the difference between the number of rel-
evant points of shapes penalises the final similarity.

At this point, note that, according to Wilson and Keil (1999), our approach
describes and compares shapes in a cognitive way as it takes into account most
of the conditions under which people perceive two distinct objects as having the
same shape, that is, invariance to changes in size, position and orientation.

In terms of the computational cost (CC), two cases can be distinguished:

14
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Algorithm 2 Similarity calculus between two QSDs.

Object A[RPA(0)..RPA(N)]; Object B[RPB(0)..RPB(M)]
DisCND(EC,C);DisCND(A, TC,L);DisINT (A, TC,L);
SimQSDAB  Sim�AB  SimRP  0
if N 6= M then

V oidRPs(v) BuildV ectorV oidRPs[0..N �M ]
MaxSize max(N,M)

end if

CyclicCorrespondences[1..C] BuildCorrespondences(N,M)
for � in CyclicCorrespondences[1..C] do

for i, j in � do

if i = void or j = void then

SimRP  0
V oidRPs(v) AnotateV oidComparison(i, j)

else

if UsingIntervalDistances then

SimRP  Sim(RPA(i), RPB(j), DisCND(EC,C), DisINT (A, TC,L))
else

SimRP  Sim(RPA(i), RPB(j), DisCND(EC,C), DisCND(A, TC,L))
end if

end if

Sim�AB  SimRP + Sim�AB
end for

Sim�AB  Sim�AB/MaxSize
if Sim�AB > SimQSDAB then

SimQSDAB  Sim�AB
end if

end for

Return SimQSDAB

• if both shapes have the same number of relevant points (n), the cost of the
algorithm is O(n2 ), because the starting point of the comparison can be any
point of the second shape.

• if the difference in the number of relevant points between both shapes is
n�m, the number of possibilities for choosing n�m points to be compared
with the void point is a simple combinatory number

✓
n

n�m

◆
=

✓
n
m

◆

and considering that the starting point of the comparison can be any point
of the shape with the highest number of relevant points, the possible cost is

15
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✓
n
m

◆
m, which can be calculated to two different ways, that is,

✓
n
m

◆
m =

n!

(n�m)!m!
m =

n(n� 1) · · · (m+ 1)

(n�m)!
m = O(nn�m+1)

✓
n
m

◆
m =

n!

(n�m)!m!
m =

n(n� 1) · · · (n�m+ 1)

m!
m = O(nm+1)

and, therefore, the final cost is:

C = min{O(nn�m+1), O(nm+1)} = O(nmin{m,n�m}+1)  O(nn/2+1) (9)

since min{m,n�m}  n/2.

Clearly, the computational cost (CC) peaks when two shapes with a high num-
ber of relevant points are compared and one of them has twice the number of
relevant points than the other.

However, as this approach is focused on finding a similarity relation between
two shapes, not a dissimilarity one, comparisons between shapes with a high dif-
ference in relevant points can be assigned a low similarity a priori and the calcu-
lation of the exact similarity value can be avoided.

Finally, note that our approach obtains all the correspondences of the relevant
points and extracts those points that are compared to the void point, which detects
the location of the difference in the shape. The cost of obtaining these correspon-
dences is high and this is the reason why our approach obtains a high computa-
tional cost. This is its advantage with respect to other polynomial-time approaches
(Gottfried, 2008; Latecki and Lakamper, 2000; Bai et al., 2008; Latecki et al.,
2008) which have some cognitive motivation, but which are not able to obtain
such explanatory information among the shapes compared.

5 Experimentation and Results

In our experimentation, first the features composing our QSD approach are pa-
rameterized by experts as described in Section 5.1. Then the SimQSD is used
on some images of the Bone category extracted from the MPEG-7 CE Shape-1
library4(Latecki et al., 2000) and the similarity values assigned from CNDs or in-
terval distances and the correspondences of relevant points obtained are presented
in Section 5.2. Moreover, the SimQSD approach is used to compare the shape
of objects from: (i) all the categories of the MPEG-7 CE Shape-1 library (Sec-
tion 5.3), (ii) images of tiles used to build mosaics (Section 5.4), and (iii) Clipart
images (Section 5.5). Finally, an analysis of the general results of our experimen-
tation is given in Section 5.6.

4http://www.dabi.temple.edu/˜shape/MPEG7/dataset.html
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5.1 Parameters Selection

In order to determine the qualitative tags defined for describing the Angles (A),
Types of Curvature (TC) and compared Lengths (L) of a shape and its correspond-
ing interval values, some experts in the implementation area were consulted. First,
they were shown some examples of tiles and they were asked to name the corre-
sponding items of each category: angles, types of curvature and lengths. After the
sampling objects finished, the number of items/classes selected for each category
was that used most by the experts. Then, each tag was related with the real value
in degrees and the AMEVA algorithm (González-Abril et al., 2009) was applied.
This method discretizes by maximizing the contingency coefficient matrix and
therefore it is robust to noisy data, as it is proved by González-Abril et al. (2009).
Finally, the AMEVA algorithm provided the classes of the intervals, which were
rounded afterwards in order to obtain the same sets of intervals used in the final
application.

For the Angle Reference System or ARS = {�, ALAB , AINT }, the chosen
granularity was 5 and the set of labels for the qualitative angles and the values of
degrees (�) related to each label were:

ALAB = {very acute, acute, right, obtuse, very obtuse}
AINT = {[0, 40], (40, 85], (85, 95], (95, 140], (140, 180]}
and in Borelian notation these are:
ABr(c) = {B20(20), B22.5(62.5), B5(90), B22.5(117.5), B20(160)}

For the Type of Curvature Reference System or TCRS = {�, TCLAB , TCINT },
the chosen granularity was also 5 and the set of labels for the type of curvature
and the values of degrees (�) related to each label were:

TCLAB = {very acute, acute, semicircular, plane, very plane}
TCINT = {[0, 40], (40, 85], (85, 95], (95, 140), [140, 180]}
and in Borelian notation these are:
TCBr(c)= {B20(20), B22.5(62.5), B5(90), B22.5(117.5), B20(160)}

For the Length Reference System or LRS = {UL, LLAB , LINT }, the chosen
granularity was 7, the set of labels related to compared length and the values
related to each label were:

LLAB = {much shorter (msh), half length (hl), a bit shorter (absh), similar length
(sl), a bit longer (abl), double length (dl), much longer (ml)}

LINT = {(0,0.4], (0.4,0.6], (0.6,0.9], (0.9,1.1], (1.1,1.9], (1.9,2.1], (2.1,10]}
and in Borelian notation these are:
LBr(c) = {B0.2(0.2), B0.1(0.5), B0.15(0.75), B0.1(1.0), B0.4(1.5),B0.1(2.0),

B3.95(6.05)}

After parameterizing the features of shape Angle (A), Type of Curvature (TC)
and Length (L), an example is shown in Table 1.

17
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The considered labels for each feature of shape were tested in experimental
studies carried out in our labs that described: (i) the shape of the edges of the tiles
that were automatically assembled into a ceramic mosaic by a robot arm (Falomir
et al., 2010) and (ii) the shape of all the relevant colour regions of any digital
image captured by a mobile robot webcam (Falomir et al., 2011).

In accordance with this parameter selection, the CNDs obtained for the features
of shape Angle (A), Type of Curvature (TC) and compared Length (L) are shown
in Figures 9, 10 and 11 and the corresponding dissimilarity matrices are obtained
from (1), (2) and (3).

Moreover, the distance (dissimilarity) matrices for the features of shape Angle
(A), Type of Curvature (TC) and compared Length (L) obtained when applying
the interval distances are shown in Tables 4 and 5. Note that, although the features
Type of Curvature (TC) and Angle (A) contain different qualitative concepts, their
dissimilarity matrices have been defined in exactly the same way because the units
and intervals are the same.

Considering the dissimilarity built from the CND for the feature Angle (cal-
culated from (1)), the dissimilarity between the interval [0,40] (corresponding to
very-acute) and the interval (40,85] (corresponding to acute) is 1; and the dissi-
milarity between the interval [0,40] and the interval (85, 95] (corresponding to
right) is 2. Mathematically speaking, it is not accurate to say that the second dis-
similarity is double the first dissimilarity because proportional values cannot be
calculated on an ordinal scale. Nevertheless, considering the dissimilarity matrix
built from interval distances for the feature Angle (Table 4), the distance between
the interval [0,40] and the interval (40,85] is 42.6; and the distance between the in-
terval [0,40] and the interval (85,95] is 71.6. Hence, using the proportional scale,
it is absolutely accurate to compare both distances from their ratio (71.6/42.6),
obtaining that one is 1.7 times the other, which can be rounded up to 2 (the same
dissimilarity obtained from CNDs, which proves its suitability).

Furthermore, the value ds(i)
Ds(i) in (6) can be seen as the importance of changes

in each feature of shape. Hence, from the dissimilarity matrices obtained from
CNDs, the following maximums (Ds(i)) are obtained: for convexity (C), 1; for
edge connection (EC), 2; for angle (A) and type of curvature (TC), 4; and for
length (L), 6. As the value assigned to each change is 1, this means that each
change in each feature has a different importance (I) in (6) and the following
priorities among features are given:

I(C)= 1>I(EC)=
1

2
>I(A)=I(TC)=

1

4
>I(L)=

1

6
.

For the interval distance matrices, the maximums (Ds(i)) for each feature are:
for angle (A) and type of curvature (TC), 140; and for length (L), 6.95. The
mean value of change between the qualitative concepts of the distance matrix for
angle and type of curvature is approximately 35 for each line and row (as the
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dissimilarity matrix is symmetric), which gives us an importance of change of
35/140 or 1/4. Moreover, the value of change between the tags of the distance
matrix for Length is approximately 1.18 for each line and row, which gives us an
importance of change in the feature of 1.18/6.95 or 17/100. Hence, it is calculated
that

I(C)=1>I(EC)=
1

2
>I(A)=I(TC)=

1

4
>I(L)=

17

100
.

Therefore, the priorities given when considering dissimilarities from matrices
built from CNDs or from interval distances have the same order and approximately
equal values of importance.

These priorities can be justified as being suitable for comparing shapes intu-
itively. In Figure 12 five shapes are shown (S1, S2, S3, S4 and S5) that exem-
plify these priorities. The Convexity (C) is the feature that has the greatest priority
because, when it changes, not only the boundary of the object changes, but also
its interior (i.e. compare shapes S1 to S2 in which only the convexity of relevant
point 2 changes). The Edge Connection (EC) is the second most important feature
because it differentiates between curves and straight lines, which is also an impor-
tant difference. For example, if we compare shapes S1 to S3 in which only the
EC of relevant point 2 changes, we will see that they are more similar than S1 and
S2 and than S2 and S3 in which both the EC and the C of 2 is different. The next
most important feature is the angle or type of curvature because it characterises
the shape of an object in a more significant way than the lengths of the edges,
which usually depend on the angle they define. If we compare S3 and S4, the
most perceptible difference is that the Angle of 2 is different, but the compared
length between relevant points 3-4 and 4-0 is also different in both shapes and
this is less perceptible. Finally, note that it is also true that the more similar the
number of relevant points between shapes, the higher the similarity, since S1-S4
are more similar to each other than any of them are to S5, which has a relevant
point less than them.

5.2 Similarity Values and Correspondences of Points Between

Shapes of the Bone Category of MPEG-7 Library

In this section, the SimQSD is tested on the images of the Bone category ex-
tracted from the MPEG-7 CE Shape-1 library. This category was selected because
it has images with interesting aspects to study (deformations, incompleteness and
large differences in the quantity of relevant points) that enable us to test the suit-
ability of the obtained correspondence of relevant points between shapes.

Figure 13 shows that this approach intuitively detects the “extra” relevant points
of a shape. Given the shapes Bone-1 and Bone-7, the calculation of the SimQSD
provides the following results:
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• The SimQSD is started at relevant point 1 of Bone-1 and at relevant point
0 of Bone-7, which correspond to one another;

• The relevant points of Bone-7 with no correspondence in Bone-1 are 6 and
16, which are easily identified to the human vision; and,

• The SimQSD between shapes is 0.88 using CNDs and 0.9 using interval
distances. A high similarity is obtained by both methods because Bone-7 is
exactly the same as Bone-1 with a bend in it.

Some other shapes extracted from the MPEG-7 CE Shape-1 library (see Figure
13) have been used to calculate the SimQSD between all shapes and to study
the obtained correspondence of relevant points. First, using dissimilarity matri-
ces built from CNDs (see Table 6) and secondly, using dissimilarity matrices built
from CNDs for the features edge connection (EC) and Convexity and using dissi-
milarity matrices built from interval distances for the features of angle (A), type
of curvature (TC) and length (L) (see Table 7).

In Tables 6 and 7, each cell indicates the SimQSD between the shapes, the
starting points of the similarity calculus and the relevant points without corre-
spondence. For example, in Table 6 the SimQSD between “Bone-1 and Bone-6”
is 0.88, starting the comparison by point 0 of Bone-1 and point 15 of Bone-6
(note that both points have the same location in the images) obtaining that rele-
vant points 10 and 11 of Bone-1 (the shape with the greatest number of relevant
points) are compared to the void point, that is they have no correspondence with
relevant points in Bone-6. In Table 7 the SimQSD between “Bone-1 and Bone-
6” is 0.89, starting the comparison by point 0 of Bone-1 and point 8 of Bone-6
(another possible alternative) obtaining that relevant points 1 and 2 of Bone-1 are
compared to the void point.

It can be noticed in Tables 6 and 7 that the similarities obtained using CNDs
or interval distances are very similar. Only a few of the similarity values calcu-
lated (marked in bold) are different. Therefore, from now on, in the paper only
the results of our approach using CNDs and interval distances will be shown be-
cause the weights assigned to the CNDs can be considered a particular case of the
interval distances obtained.

Finally, it is important to note that our approach obtains a high similarity value
between nearly symmetrical shapes (such as Bone-7 and Bone-8) and it also tack-
les the problem of deformations and incomplete shapes implicitly. Bone-18 can
be considered as Bone-1, but incomplete, because the top of the bone that appears
in all the other images does not appear in Bone-18. Furthermore, Bone-7, Bone-8
and Bone-17 can be considered as Bone-1, but broken or deformed in the middle.
Moreover, the relevant points of one shape that do not have a correspondence in
the other shape show where the deformation or the incomplete part of the other
shape is. Therefore, our approach can obtain suitable similarities between instan-
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ces of the same shape that are deformed or incomplete and give an approximate
location of such deformation or incompleteness.

5.3 Similarity Values Between Different Shape Categories of

MPEG-7 Library

In this section, the bulls-eye test5 for shape retrieval was performed using the
SimQSD on the images of the MPEG-7 CE Shape-1 library. In this test, every
shape in the database is compared to all other shapes, and the number of shapes
from the same class among the 40 most similar shapes is reported. The bull’s
eye retrieval rate is the ratio of the total number of shapes from the same class
to the highest possible number. Thus, the best possible rate is 100%. For image
segmentation and closed contour extraction, the method by Felzenszwalb and Hut-
tenlocher (2004) was used.

Table 8 shows the categories which obtained a highest bulls-eye score whereas
Table 9 shows the results of the 10 categories with the worst bulls-eye score. Both
tables have the following structure: (i) name and bulls-eye score of the category;
(ii) image of the key shape; (iii) images of the MPEG-7 arranged according to the
obtained similarity value.

In Table 8, the most shapes retrieved belong to the same category or they are
cognitively similar. For example: (i) the pencil retrieved in the Bottle category
have nearly the same shape as any of the bottles; (ii) the device-star retrieved in
the Bone category can be built joining the two ends of Bone-12; (iii) the apples
retrieved in the Pocket category have the same boundary shape as the clocks; etc.
Moreover, analysing the results obtained, it can be deduced that the SimQSD
approach is:

i. invariant to rotations, proved by the Hammer, Pencil and Spoon categories;

ii. invariant to translations, proved by the Brick category;

iii. invariant to scaling, proved by the Bone and Pocket categories;

iv. invariant to mirror-image reflections, proved by the Hammer category;

v. influenced by the quantity of relevant points contained by the compared shapes:
the more difference in relevant points (or the more relevant points compared
to the void point) the lower the similarity.

If both shapes have an approximate number of relevant points, the features of
shape of each relevant point (i.e. the edge connection, the angle, the convexity, the
type of curvature, etc.) are the ones that influences the similarity more, according
to the priorities exemplified in Figure 12. For example, objects retrieved as similar
are those whose:

5http://www.dabi.temple.edu/˜shape/MPEG7/results.html
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i. shapes have a lot of legs (concavities and convexities) proved by Teddy and
Chopper categories;

ii. shapes have round handles or queues proved by Cup and Pocket categories;

iii. shapes have similar curves proved by Heart and Pocket categories;

iv. shapes have similar curves and convexities proved by Comma and Spoon
categories.

Note that the SimQSD is intended to calculate a similarity measure between
shapes and it has not been designed for object recognition. One aspect to take into
account in object retrieval from a database is the similarity of the objects com-
pared, not only the similarity of the shape of its boundary. In order to improve the
bulls-eye test score, the SimQSD should be combined with a similarity measure
for comparing sizes, for example.

5.4 Similarity Values Between Tile Images Used to Build Mo-

saics

The SimQSD approach is also used to compare the shapes of tile images captured
by an industrial camera AVT-Guppy F033C located on a platform from which a
robot arm picks and places tile pieces for building tile mosaics (Figure 14). The
closed boundary of the objects within these BMP or JPEG images is extracted
using the well-known segmentation method by Canny (1986).

Table 10 shows the similarity values obtained for tile images which were used
to build the mosaic in Figure 14. This table shows: (i) image of the tile key shape;
(ii) images of the rest of the tiles arranged according to the obtained similarity
value. Note that the key shapes are arranged in this table by the number of rele-
vant points. Moreover, as the tile shapes have straight edges with convex relevant
points, it is easy to notice the decrease in the similarity value according to the
difference in the number of relevant points of both shapes.

Finally, it is also important to realise that the SimQSD approach deals with
colour images and that the colour of the objects is not taken into account for
calculating the similarity value between their shapes.

5.5 Similarity Values Between a Collection of Clipart Images

Clipart images refer to pre-made images composed of illustrations (created by
hand or by computer software) which are used commonly in both personal and
commercial projects and are easily found on the Web as icons. The Clipart images
used in this comparison are BMP images that contain colour or back and white
objects. The closed boundary of those objects is extracted by using the colour
segmentation method by Felzenszwalb and Huttenlocher (2004).
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Table 11 presents the similarity values obtained for a collection of Clipart im-
ages showing: (i) Clipart image with the key shape; and (ii) Clipart images ar-
ranged according to the obtained similarity value.

From Table 11, it can be noticed that images which could be considered to be-
long to the same category have obtained a high similarity value (i.e. the Clipart
images of chess pieces or animals), but other images that would be not included in
the same category are obtaining high similarity values because they have similar
number of relevant points, similar number of curves, similar number of concavi-
ties, etc. (i.e. the arrangements obtained for the club, heart and arrow). However,
it is important to note that cognitive similarities can be found between the shapes
of different objects, as for example: (i) the shape of a card club could be similar
to the shape of a cloverleaf, or to the shapes of other leafs, or to the shape of other
card symbols such as a spade; (ii) the shape of a heart could be similar to the shape
of a leaf, to the shape of a rotated card spade or to the shape of a drop; and (iii)
the shape of an arrow could be similar to the shape of a card spade and it is also
sharp pointed as a card diamond.

5.6 Summary of the Results

After the experimental evaluation, the advantages of our approach are summarized
here:

• it provides a similarity value between two shapes but also a set of points
with no correspondence in the compared shapes;

• it obtains nearly the same similarity values either using CNDs or interval
distances;

• it obtains a similarity value between instances of the same shape that are
deformed or incomplete and it also gives an approximate location of such
deformation or incompleteness because the relevant points of one shape that
do not have a correspondence in the other shape show where the deforma-
tion or the incomplete part of the other shape is;

• it obtains a high similarity value between translated, rotated, scaled and
symmetrical shapes;

• it can compare colour or black and white images and it does not require any
special boundary extraction technique (i.e. Canny (1986), Felzenszwalb
and Huttenlocher (2004), etc.).

From a cognitive point of view, the problem of shape equivalence involves un-
derstanding the conditions under which people perceive two distinct objects as
having the same shape. In addition to the cognitive definition of shape perception
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by Wilson and Keil (1999), Palmer (1989) (see Representing Shape and Struc-
ture Chapter) considers that two objects have the same objective shape even after
they have undergone spatial transformations such as translations (changing posi-
tion), rotations (changing orientation), scaling (expanding and contracting in size),
mirror-image reflections (changing direction) and combinations of these transfor-
mations. However, if spatial transformations such as squashing, stretching or de-
forming in any way are needed to bring two objects into exact correspondence,
then they have different objective shapes, although they can be perceived as very
similar. According to this, our approach has proved to fulfill the requirements of a
cognitive perception of shape, because it is invariant to translations, rotations and
scaling and also obtains a high similarity value between mirror-image reflections
or symmetrical shapes.

6 Conclusions

A generalization of the qualitative model for shape description (QSD) formulated
by Falomir et al. (2008) has been presented in this paper. Then, an approach for
calculating a similarity value between two QSDs has been presented (SimQSD).
This approach works in three steps: (1) comparing qualitative tags related to the
same feature of shape by building dissimilarity matrices using: (a) conceptual
neighbourhood diagrams (CNDs); and (b) interval distances; (2) calculating a si-
milarity measure between relevant points; and finally, (3) obtaining a similarity
measure between the QSD of the objects by cyclically comparing their relevant
points.

Both methods for obtaining dissimilarity matrices for qualitative features of
shape (CNDs and interval distances) provide similarity measures that are suitable
for our case of study, because there is only a very small difference between them.
Furthermore, it is clear that obtaining dissimilarity matrices between qualitative
concepts built from CNDs is more intuitive and simpler to calculate. In contrast,
dissimilarity matrices between qualitative concepts built from interval distances
are more accurate from a mathematical point of view.

The SimQSD approach has been tested using all the images of different ca-
tegories of the MPEG-7 CE-Shape-1 library, images of tiles used to build mosaics,
and a collection of Clipart images. It is proved to be able to compare colour or
black and white images and it is independent of the segmentation method used
for extracting the boundary of the shape of the object in the image. Moreover,
the results obtained show that: (1) the similarity values obtained are invariant to
rotations, translations, scaling and mirror-image changes of shapes and also com-
binations of these; (2) a similarity value can be obtained between deformed or
incomplete shapes and the approximate location of the deformation or cut is de-
termined by locating the relevant points with void correspondence; and (3) the
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similarity values obtained by our approach are coherent and cognitive because the
lower the difference in shape to the human vision, the higher the similarity.
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qualitative shape matching applied to ceramic mosaic assembling. Journal
of Intelligent Manufacturing, 22:1–11. DOI 10.1007/s10845-011-0524-6.

28



Similarities Between Qualitative Shape Descriptions 29

Palmer, S. (1999). Vision Science: Photons to Phenomenology. The MIT Press.

Palmer, S. E. (1989). Reference frames in the perception of shape and orientation.
In Shepp, B. E. and Ballesteros, S., editors, Object perception: Structure and
process, pages 121–163. Erlbaum, Hilldale, NJ.

Richards, W. and Hoffman, D. D. (1985). Codon constraints on closed 2D shapes.
In Computer Vision, Graphics, and Image Processing, pages 265–281.

Robinson, S. (2007). A statistical process control approach to selecting a warm-
up period for a discrete-event simulation. European Journal of Operational
Research, 176:332–346.

Schlieder, C. (1994). Qualitative shape representation. In P Burrough and A M
Frank, editors, Proceedings, GISDATA Specialist Meeting on Geographical
Objects with Undetermined Boundaries, pages 123–140. Taylor and Francis.

Schuldt, A., Gottfried, B., and Herzog, O. (2006). Retrieving shapes efficiently by
a qualitative shape descriptor: The scope histogram. In Image and Video Re-
trieval, 5th International Conference, CIVR 2006, Proceedings, pages 261–
270.

Sebastian, T. B., Klein, P. N., and Kimia, B. B. (2001). Recognition of shapes
by editing shock graphs. In In IEEE International Conference on Computer
Vision, pages 755–762.

Sebastian, T. B., Klein, P. N., and Kimia, B. B. (2002). Shock-based indexing into
large shape databases. In ECCV ’02: Proceedings of the 7th European Con-
ference on Computer Vision-Part III, pages 731–746, London, UK. Springer-
Verlag.

Shapiro, L., Moriarty, J., Mulgaonkar, P., and Haralick, R. (1980). Sticks, plates,
and blobs: Three-dimensional object representation for scene analysis. In
Association for the Advancement of Artificial Intelligence (AAAI), pages 28–
31.

Shokoufandeh, A., Dickinson, S. J., Jönsson, C., Bretzner, L., and Lindeberg, T.
(2002). On the representation and matching of qualitative shape at multiple
scales. In Heyden, A., Sparr, G., Nielsen, M., and Johansen, P., editors,
ECCV (3), volume 2352 of Lecture Notes in Computer Science, pages 759–
775. Springer.

Siddiqi, K., Shokoufandeh, A., Dickinson, S. J., and Zucker, S. W. (1998). Shock
graphs and shape matching. In Proceedings of the Sixth International Con-
ference on Computer Vision (ICCV), page 222, Washington, DC, USA. IEEE
Computer Society.

29



30 Z. Falomir et al.

Super, B. J. (2004). Fast correspondence-based system for shape retrieval. Pattern
Recogn. Lett., 25(2):217–225.

Wilson, R. A. and Keil, F. C., editors (1999). The MIT Encyclopedia of the Cog-
nitive Sciences. The MIT Press, Cambridge, Massachusetts.

30



Similarities Between Qualitative Shape Descriptions 31

Figure 1: Characterisation of Pj a point of curvature.

Figure 2: Characterisation of Pj as convex and Pj+1 as concave.

Figure 3: CND for feature Edge Connection (EC).
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Figure 4: CND for feature Convexity (C).

Figure 5: CND for feature Angle (A).

Figure 6: CND for feature Type of Curvature (TC).

Figure 7: CND for feature compared Length (L).

Figure 8: Examples of shapes with different quantities of relevant points.

Figure 9: CND for feature Angle (A) determined by experts.
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Figure 10: CND for feature Type of Curvature (TC) determined by experts.

Figure 11: CND for feature compared Length (L) determined by experts:
much shorter (msh), half length (hl), a bit shorter (absh), similar length (sl),
a bit longer (abl), double length (dl), much longer (ml).

Figure 12: Examples of shapes for explaining the intuitive priorities obtained for
C, EC, A, TC and L.

Table 1: Qualitative description of a 2D object containing straight segments and
curves.

Shape Qualitative Description

A:

B1:

B2:

B3:

C:

D:

E:

QualitativeShapeDesc(Figure)=[
[line-p-line, right, sl, convex],
[line-p-curve, obtuse, sl, concave],
[curve-p, acute, sl, convex],
[curve-p-line, obtuse, absh, concave],
[line-p-line, right, abl, convex],
[line-p-line, right, msh, convex],
[line-p-line, right, ml, convex]].
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Figure 13: Images from MPEG-7 CE Shape-1 library used for testing our ap-
proach. The starting point of the QSD is shown by the number 0.

(a) Bone-1 (b) Bone-3 (c) Bone-4 (d) Bone-6

(e) Bone-7 (f) Bone-8 (g) Bone-11 (h) Bone-12

(i) Bone-17 (j) Bone-18

Table 2: Dissimilarity matrix for EC using a CND.

EC lpL lpC cpL cpC cp/pC
lpL 0 1 1 2 2
lpC 1 0 2 1 1
cpL 1 2 0 1 1
cpC 2 1 1 0 1

cp/pC 2 1 1 1 0
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Figure 14: Scenario where automatic assembling of tile mosaics are carried out.

(a) Industrial cam-
era located on a
platform

(b) Image obtained (c) Mosaic to assemble

Table 3: Dissimilarity matrix for C using a CND.

Convexity Concave Convex
Concave 0 1
Convex 1 0

Table 4: Distance matrix for TC and A using interval distances.

TC

or A

Very
acute

Acute
Semi-

circular
or Right

Plane or
Obtuse

Very
plane

or Very
obtuse

Very acute 0.0 42.6 71.6 97.5 140.0
Acute 42.6 0.0 32.6 55.0 97.5
Semi-

circular
or Right

71.6 32.6 0.0 32.6 71.6

Plane or
Obtuse

97.5 55.0 32.6 0.0 42.6

Very
plane

or Very
obtuse

140.0 97.5 71.6 42.6 0.0
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Table 5: Distance matrix for qualitative compared length using interval distances.

Length msh hl qsh sl ql dl ml
msh 0.00 0.32 0.55 0.81 1.32 1.80 6.95
hl 0.32 0.00 0.25 0.50 1.04 1.50 6.75

qsh 0.55 0.25 0.00 0.25 0.79 1.25 6.52
sl 0.81 0.50 0.25 0.00 0.58 1.00 6.35
ql 1.32 1.04 0.79 0.58 0.00 0.58 5.77
dl 1.80 1.50 1.25 1.00 0.58 0.00 5.59
ml 6.95 6.75 6.52 6.35 5.77 5.59 0.00
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Table 6: SimQSD built from CNDs tested on some Bone shapes of MPEG-7.

Bone 3 4 6 7 8 11 12 17 18

1

0.98

(0,0)

;

0.93

(0,1)

{0}

0.88

(0,15)

{10,11}

0.88

(1,0)

{6,16}

0.88

(1,0)

{6,16}

0.93

(0,17)

;

0.86

(0,17)

;

0.79

(1,0)

{5,7,

16,18}

0.64

(0,0)

{0,1,2,

3,6,16}

3 1

0.92

(0,1)

{1}

0.88

(0,8)

{1,2}

0.88

(1,0)

{6,16}

0.87

(1,0)

{6,16}

0.92

(0,17)

;

0.85

(0,17)

;

0.79

(1,0)

{5,7,

16,18}

0.64

(0,0)

{0,2,3,

4,6,16}

4 1

0.91

(0,7)

{2}

0.82

(2,0)

{0,6,16}

0.82

(2,0)

{0,6,16}

0.89

(1,0)

{17}

0.82

(1,0)

{17}

0.74

(2,0)

{0,5,7,

16,18}

0.68

(0,11)

{0,2,3,

6,16}

6 1

0.79

(0,0)

{6,10,

11,16}

0.78

(9,0)

{1,2,

6,16}

0.81

(8,0)

{1,17}

0.76

(0,0)

{10,12}

0.70

(0,0)

{5,7,

12,15,

16,18}

0.71

(0,5)

{6,8,

10,12}

7 1

0.97

(0,10)

;

0.83

(0,0)

{6,16}

0.77

(0,0)

{6,16}

0.86

(0,0)

{7,16}

0.58

(0,1)

{0,1,2,

3,5,6,

17,18}

8 1

0.83

(0,0)

{6,16}

0.77

(0,0)

{6,16}

0.87

(0,0)

{5,18}

0.58

(0,0)

{0,1,2,

3,5,6,

16,18}

11 1

0.93

(0,0)

;

0.74

(0,1)

{0,5,7,

21}

0.64

(0,1)

{0,1,2,

3,4,17}

12 1

0.69

(1,0)

{0,5,7,

21}

0.57

(0,1)

{1,3,5,

12,14,

15}

17 1

0.52

(0,10)

{0,1,2,3,

5,6,7,16,

19,20}
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Table 7: SimQSD tested on some shapes using dissimilarity matrices built from
interval distances for the features of A, TC and L.

Bone 3 4 6 7 8 11 12 17 18

1

1.00

(0,0)

;

0.94

(0,1)

{0}

0.89

(0,8)

{1, 2}

0.90

(1,0)

{6,16}

0.90

(1, 0)

{6,16}

0.97

(0,17)

;

0.94

(0,17)

;

0.80

(1, 0)

{5,7,

16,18}

0.65

(0,0)

{1,2,4,

5,6,16}

3 1

0.94

(0,1)

{1}

0.89

(0,8)

{0,2}

0.90

(1,0)

{6,16}

0.90

(1,0)

{6,16}

0.96

(0,17)

;

0.94

(0,17)

;

0.80

(1,0)

{5,7,

17,18}

0.65

(0,0)

{0,1,2,

4,6,16}

4 1

0.93

(0,7)

{2}

0.85

(10,0)

{6,9,16}

0.85

(2,0)

{0,6,16}

0.92

(1,0)

{17}

0.90

(1,0)

{17}

0.75

(1,0)

{5,7,10,

16,18}

0.69

(0,11)

{0,2,3,

6,16}

6 1

0.80

(9,0)

{1,2,

6,16}

0.80

(9,0)

{1,2,

6,16}

0.87

(9,0)

{1,3}

0.84

(9,0)

{1,3}

0.70

(9,0)

{1,2,

5,7,

16,18}

0.73

(0,5)

{6,8,

10,12}

7 1

0.99

(0,10)

;

0.87

(0,0)

{6,16}

0.84

(0,0)

{6,16}

0.88

(10,0)

{5,18}

0.59

(0,1)

{0,1,2,

3,5,6,

16,17}

8 1

0.87

(0,0)

{6,16}

0.84

(0,0)

{6,16}

0.89

(0,0)

{5,18}

0.59

(0,0)

{0,1,2,

5,16,17,

18,19}

11 1

0.97

(0,0)

;

0.78

(0,9)

{9,10,

16,18}

0.65

(0,11)

{1,3,5,

15,16,

17}

12 1

0.76

(0,0)

{9,10,

16,18}

0.64

(0,11)

{1,3,5,

12,14,

15}

17 1

0.53

(0,1)

{0,1,2,3,

5,6,7,16,

19,20}38
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Table 8: The Top 10 results of testing SimQSD on all the categories from
MPEG-7 Shape Library using CNDs and interval distances.

bulls eye key
class score example

bottle
87% bottle-03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

hammer
77% hammer-7 1.00 0.99 0.97 0.91 0.91 0.9 0.9 0.9

Brick
64% brick-01 0.93 0.92 0.89 0.87 0.87 0.87 0.86 0.86

HCircle
61% HCircle-1 0.99 0.95 0.94 0.94 0.93 0.92 0.92 0.92

Bone
59% Bone-12 0.97 0.94 0.94 0.94 0.94 0.93 0.93 0.9

Glas
59% Glas-7 0.99 0.99 0.99 0.98 0.97 0.91 0.91 0.91

Comma
48% Comma-1 1.00 1.00 1.00 1.00 0.94 0.93 0.92 0.91

Heart
42% Heart-2 1.00 1.00 1.00 0.92 0.88 0.88 0.87 0.86

children
42% children-2 0.91 0.91 0.9 0.9 0.89 0.89 0.88 0.88

pocket
38% pocket-16 0.95 0.93 0.93 0.92 0.92 0.9 0.9 0.9
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Table 9: The Bottom 10 results of testing SimQSD on all the categories from
MPEG-7 Shape Library using CNDs and interval distances.

bulls eye key
class score example

jar
31% jar-2 1.00 0.92 0.9 0.87 0.83 0.82 0.82 0.82

teddy
31% teddy-01 0.88 0.88 0.88 0.85 0.85 0.85 0.85 0.85

chopper
28% chopper-11 0.91 0.86 0.86 0.85 0.85 0.85 0.85 0.85

shoe
27% shoe-19 1.00 0.93 0.89 0.88 0.88 0.88 0.88 0.88

cellular-
phone 27% cellular- 0.93 0.92 0.92 0.9 0.9 0.9 0.9 0.89

phone-10

pencil
27% pencil-14 0.96 0.95 0.92 0.92 0.92 0.92 0.92 0.91

cup
26% cup-18 0.91 0.89 0.89 0.88 0.88 0.87 0.87 0.86

face
24% face-2 0.9 0.89 0.89 0.89 0.88 0.87 0.87 0.87

spoon
23% spoon-6 1.00 0.92 0.92 0.91 0.91 0.91 0.9 0.9

fork
22% fork-11 0.94 0.89 0.89 0.87 0.87 0.87 0.87 0.87
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Table 10: Results of testing SimQSD on tile images used to build mosaics.

0.98 0.98 0.84 0.84 0.84 0.84 0.84 0.71

0.71 0.71 0.71 0.71 0.68 0.68 0.57 0.57

1.00 0.95 0.95 0.95 0.84 0.85 0.85 0.82

0.82 0.82 0.82 0.82 0.79 0.79 0.65 0.65

1.00 1.00 0.99 0.99 0.99 0.9 0.9 0.82

0.82 0.82 0.82 0.82 0.8 0.8 0.71 0.71

1.00 0.91 0.91 0.9 0.9 0.9 0.9 0.79

0.79 0.76 0.76 0.76 0.75 0.75 0.68 0.68

1.00 0.8 0.8 0.8 0.79 0.79 0.79 0.75

0.75 0.66 0.66 0.66 0.65 0.65 0.57 0.57
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Table 11: Results of testing SimQSD on some Clipart images.

0.77 0.67 0.63 0.58 0.56 0.4

0.78 0.64 0.6 0.59 0.55 0.49

1.0 1.0 0.7 0.64 0.61 0.46

0.77 0.71 0.7 0.66 0.64 0.63

0.81 0.76 0.71 0.71 0.71 0.62

0.8 0.78 0.77 0.74 0.71 0.7

0.76 0.75 0.72 0.71 0.66 0.45
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