
Qualitative Spatial Representation and
Reasoning in the SparQ-Toolbox

Jan Oliver Wallgrün, Lutz Frommberger, Diedrich Wolter, Frank Dylla,
and Christian Freksa

SFB/TR 8 Spatial Cognition
Universität Bremen

Bibliothekstr. 1, 28359 Bremen, Germany
{wallgruen,lutz,dwolter,dylla,freksa}@sfbtr8.uni-bremen.de

Abstract. A multitude of calculi for qualitative spatial reasoning (QSR)
have been proposed during the last two decades. The number of practical
applications that make use of QSR techniques is, however, comparatively
small. One reason for this may be seen in the difficulty for people from
outside the field to incorporate the required reasoning techniques into
their software. Sometimes, proposed calculi are only partially specified
and implementations are rarely available. With the SparQ toolbox pre-
sented in this text, we seek to improve this situation by making common
calculi and standard reasoning techniques accessible in a way that allows
for easy integration into applications. We hope to turn this into a com-
munity effort and encourage researchers to incorporate their calculi into
SparQ. This text is intended to present SparQ to potential users and
contributors and to provide an overview on its features and utilization.

1 Introduction

Qualitative spatial reasoning (QSR) is an established field of research pursued by
investigators from many disciplines including geography, philosophy, computer
science, and AI [1]. The general goal is to model commonsense knowledge and
reasoning about space as efficient representation and reasoning mechanisms that
are still expressive enough to solve a given task. Qualitative spatial representa-
tion techniques are especially suited for applications that involve interaction with
humans as they provide an interface based on human spatial concepts.

Following the approach taken in Allen’s seminal paper on qualitative tempo-
ral reasoning [2], QSR is typically realized in form of calculi over sets of spatial
relations (like ‘left-of’ or ‘north-of’). These are called qualitative spatial calculi.
A multitude of spatial calculi has been proposed during the last two decades,
focusing on different aspects of space (mereotopology, orientation, distance, etc.)
and dealing with different kinds of objects (points, line segments, extended ob-
jects, etc.). Two main research directions in QSR are mereotopological reasoning
about regions [3,4,5] and reasoning about positional information (distance and
orientation) of point objects [6,7,8,9,10,11,12] or line segments [13,14,15]. In

T. Barkowsky et al. (Eds.): Spatial Cognition V, LNAI 4387, pp. 39–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

40 J.O. Wallgrün et al.

addition, some approaches are concerned with direction relations between ex-
tended objects [16,17] or combine different aspects of space [18,19].

Despite this large variety of qualitative spatial calculi, the amount of applica-
tions employing qualitative spatial reasoning techniques is comparatively small.
We believe that one important factor for this is the following: Choosing the right
calculus for a particular application is a challenging task, especially for people
not familiar with QSR. Calculi are often only partially specified and usually no
implementation is made available—if the calculus is implemented at all and not
only investigated theoretically. As a result, it is not possible to “quickly” eval-
uate how different calculi perform in practice. Even if an application developer
has decided on a particular calculus, he has to invest serious efforts to include
the calculus and required reasoning techniques into the application. For many
calculi this is a time-consuming and error-prone process (e. g. involving writing
down large composition tables, which are often not even completely specified in
the literature). We think that researchers involved in the investigation of QSR
will also benefit from reference implementations of calculi that are available in
a coherent framework. Tasks like comparing different calculi with respect to
expressiveness or average computational properties in a certain context would
clearly be simplified.

To provide a platform for making the calculi and reasoning techniques de-
veloped in the QSR community available, we have started the development of
a qualitative spatial reasoning toolbox called SparQ1. The toolbox supports bi-
nary and ternary spatial calculi. SparQ aims at supporting the most common
tasks—qualification, computing with relations, constraint-based reasoning (cp.
Section 3)—for an extensible set of spatial calculi. Our focus is on providing an
implementation of QSR techniques that is tailored towards the needs of appli-
cation developers. A similar approach has recently been reported in [20] where
calculi and reasoning techniques are provided in form of a programming library
and focuses on algebraic and constraint-based reasoning. SparQ, on the other
hand, is a application program that can be used directly and provides a broader
range of services. A complementary approach aiming at the specification and
investigation of the interrelations between calculi has been described in [21].
There, the calculi are defined in the algebraic specification language CASL. We
believe that a toolbox like SparQ can provide a useful interface between the the-
oretical specification framework and the application areas of spatial cognition,
like cognitive modeling or GIS.

In its current version, SparQ mainly focuses on calculi from the area of reason-
ing about the orientation of point objects or line segments. However, specifying
and adding other calculi is simple. We hope to encourage researchers from other
groups to incorporate their calculi in a community effort of providing a rich spa-
tial reasoning environment. SparQ is designed as an open framework of single
program components with text-based communication. It therefore allows for in-
tegrating code written in virtually any programming language, so that already
existing code can easily be integrated into SparQ.

1 Spatial Reasoning done Qualitatively.

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 41

Specifically, the goals of SparQ are the following:

– providing reference implementations for spatial calculi from the QSR com-
munity

– making it easy to specify and integrate new calculi
– providing typical procedures required to apply QSR in a convenient way
– offering a uniform interface that supports switching between calculi
– being easily integrable into own applications

The current version of SparQ and further documentation will be made avail-
able at the SparQ homepage2. In the present text, we will describe SparQ and its
utilization. The next section briefly recapitulates the relevant terms concerning
QSR and spatial calculi as needed for the remainder of the text. In Section 3,
we describe the services provided by SparQ. Section 4 explains how new cal-
culi can be incorporated into SparQ, and Section 5 describes how SparQ can be
integrated into applications. Finally, Section 6 contains a case study in which
SparQ is employed to compare different calculi with respect to their ability of
detecting the inconsistency in the Indian Tent Problem [22].

2 Reasoning with Qualitative Spatial Relations

A qualitative spatial calculus defines operations on a finite set R of spatial
relations. The spatial relations are defined over a particular set of spatial objects,
the domain D. In the rest of the text, we will encounter the sets of points in the
plane, of oriented line segments in the plane, and of oriented points in the plane
as domains. While a binary calculus deals with binary relations R ⊆ D × D, a
ternary calculus operates with ternary relations R ⊆ D × D × D.

The set of relations R of a spatial calculus is typically derived from a jointly
exhaustive and pairwise disjoint (JEPD) set of base relations BR so that each
pair of objects from D is contained in exactly one relation from BR. Every
relation in R is a union of base relations. Since spatial calculi are typically used
for constraint reasoning and unions of relations correspond to disjunctions of
relational constraints, it is common to speak of disjunctions of relations as well
and write them as sets {B1, ..., Bn} of base relations. Using this convention, R
is either taken to be the powerset 2BR of the base relations or a subset of the
powerset. In order to be usable for constraint reasoning, R should contain at
least the base relations Bi, the empty relation ∅, the universal relation U , and
the identity relation Id. R should also be closed under the operations defined in
the following.

As the relations are subsets of tuples from the same Cartesian product, the
set operations union, intersection, and complement can be directly applied:

Union: R ∪ S = { t | t ∈ R ∨ t ∈ S }
Intersection: R ∩ S = { t | t ∈ R ∧ t ∈ S }
Complement: R = U \ R = { t | t ∈ U ∧ t)∈ R }
2 http://www.sfbtr8.uni-bremen.de/project/r3/sparq/

http://www.sfbtr8.uni-bremen.de/project/r3/sparq/

42 J.O. Wallgrün et al.

where R and S are both n-ary relations on D and t is an n-tuple of elements
from D. The other operations depend on the arity of the calculus.

2.1 Operations for Binary Calculi

For binary calculi the other two important operations are conversion and com-
position:

Converse: R! = { (y, x) | (x, y) ∈ R }
(Strong) composition: R ◦ S = { (x, z) | ∃y ∈ D : ((x, y) ∈ R ∧ (y, z) ∈ S) }

For some calculi, no finite set of relations exists that includes the base re-
lations and is closed under composition as defined above. In this case, a weak
composition is defined instead that takes the union of all base relations that have
a non-empty intersection with the result of the strong composition:

Weak composition: R ◦weak S = { Bi | Bi ∈ BR ∧ Bi ∩ (R ◦ S))= ∅ }

2.2 Operations for Ternary Calculi

While there is only one possibility to permute the two objects of a binary relation
which corresponds to the converse operation, there exist 5 such permutations for
the three objects of a ternary relation3, namely [23]:

Inverse: INV(R) = { (y, x, z) | (x, y, z) ∈ R }
Short cut: SC(R) = { (x, z, y) | (x, y, z) ∈ R }
Inverse short cut: SCI(R) = { (z, x, y) | (x, y, z) ∈ R }
Homing: HM(R) = { (y, z, x) | (x, y, z) ∈ R }
Inverse homing: HMI(R) = { (z, y, x) | (x, y, z) ∈ R }

Composition for ternary calculi is defined according to the binary case:

(Strong) comp: R ◦ S = { (w, x, z) | ∃y ∈ D : ((w, x, y) ∈ R ∧ (x, y, z) ∈ S) }

Other ways of composing two ternary relations can be expressed as a combina-
tion of the unary permutation operations and the composition [24] and thus do
not have to be defined separately. The definition of weak composition is identical
to the binary case.

2.3 Constraint Reasoning with Spatial Calculi

Spatial calculi are often used to formulate constraints about the spatial con-
figurations of a set of objects from the domain of the calculus as a constraint
satisfaction problem (CSP): Such a spatial constraint satisfaction problem then
consists of a set of variables X1, ..., Xn (one for each spatial object) and a set
of constraints C1, ..., Cm which are relations from the calculus. Each variable Xi

3 In general, two operations (permutation and rotation) are sufficient to generate all
permuations (cmp. [20]). Therefore, not all of these operations need to be specified.

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 43

can take values from the domain of the utilized calculus. CSPs are often de-
scribed as constraint networks which are complete labeled graphs with a node
for each variable and each edge labeled with the corresponding relation from
the calculus. A CSP is consistent, if an assignment for all variables to values of
the domain can be found, that satisfies all the constraints. Spatial CSPs usually
have infinite domains and thus backtracking over the domains can not be used
to determine consistency.

Besides consistency, weaker forms of consistency called local consistencies are
of interest in QSR. On the one hand, they can be employed as a forward checking
technique reducing the CSP to a smaller equivalent CSP (one that has the same
set of solutions). Furthermore, in some cases a form of local consistency can
be proven to be not only necessary but also sufficient for consistency. If this is
only the case for a certain subset S ⊂ R and this subset exhaustively splits R
(which means that every relation from R can be expressed as a disjunction of
relations from S), this at least allows to formulate a backtracking algorithm to
determine consistency by recursively splitting the constraints and using the local
consistency as a decision procedure for the resulting CSPs with constraints from
S [25].

One important form of local consistency is path-consistency which (in binary
CSPs) means that for every triple of variables each consistent evaluation of
the first two variables can be extended to the third variable in such a way
that all constraints are satisfied. Path-consistency can be enforced syntactically
based on the composition operation (for instance with the algorithm by van
Beek [26]) in O(n3) time where n is the number of variables. However, this
syntactic procedure does not necessarily yield the correct result with respect
to path-consistency as defined above. The same holds for syntactic procedures
that compute other kinds of consistency. Whether syntactic consistency coincides
with semantic consistency with respect to the domain needs be investigated for
each calculus individually (see [27,28] for an in-depth discussion).

2.4 Supported Calculi

As mentioned above, qualitative calculi are based on a certain domain of basic
entities: time intervals in the case of Allen’s Interval Calculus [2], or objects like
points, line segments, or regions in typical spatial calculi. In the following, we
will briefly introduce those calculi that are currently included in SparQ and that
will be used in the examples later on. A quick overview is given in Table 1 which
also classifies the calculi according to their arity (binary, ternary), their domain
(points, oriented points, line segments, regions), and the aspect of space modeled
(orientation, distance, mereotopology).

FlipFlop Calculus (FFC) and the LR refinement. The FlipFlop calculus
proposed in [9] describes the position of a point C (the referent) in the plane
with respect to two other points A (the origin) and B (the relatum) as illustrated
in Fig. 1. It can for instance be used to describe the spatial relation of C to B as
seen from A. For configurations with A)= B the following base relations are dis-
tinguished: C can be to the left or to the right of the oriented line going through

44 J.O. Wallgrün et al.

Table 1. The calculi currently included in SparQ

arity domain aspect of space
Calculus binary ternary point or. point line seg. region orient. dist. mereot.

FFC/LR
√ √ √

SCC
√ √ √

DCC
√ √ √

DRAc
√ √ √

OPRAm
√ √ √

RCC-5/84 √ √ √

A and B, or C can be placed on the line resulting in one of the five relations
inside, front, back, start (C = A) or end (C = B) (cp. Fig. 1). Relations for the
case where A and B coincide were not included in Ligozat’s original definition
[9]. This was done with the LR refinement [29] that introduces the relations
dou (A = B)= C) and tri (A = B = C) as additional relations, resulting in a
total of 9 base relations. A LR relation relLR is written as A, B relLR C, e.g.
A, B r C as depicted in Fig. 1.

l
A B Cr

es

Fig. 1. The reference frame for the LR calculus, an refined version of the FlipFlop
Calculus

Single Cross Calculus (SCC). The Single Cross Calculus is a ternary calculus
that describes the direction of a point C (the referent) wrt. a point B (the
relatum) as seen from a third point A (the origin). It was originally proposed in
[6]. The plane is partitioned into regions by the line going through A and B and
the perpendicular line through B. This results in eight distinct orientations as
illustrated in Fig. 2(a). We denote these base relations by numbers from 0 to 7
instead of using linguistic prepositions, e.g. 2 instead of left as in [6]. Relations
0,2,4,6 are linear ones, while relations 1,3,5,7 are planar. In addition, three special
relations exist for the cases A)= B = C (bc), A = B)= C (dou), and A =
B = C (tri). A Single Cross relation relSCC is written as A, B relSCC C, e.g.
A, B 4 C or A, B dou C. The relation depicted in Fig. 2(a) is the relation
A, B 5 C.

4 Currently only the relational specification is available for RCC, but no ‘qualify’
module (cmp. Section 3.1).

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 45

4

0

53

2

1

6

7

B

A

C

(a) Single Cross
Calculus reference
frame

0

26

35
4

A

B

1_5

C

4

53

2

1

6

7

B

A

2_5

3_5

3_6

3_7 4_0

6_3

5_34_4
5_2

7_3

7 1

0 0_4

5_1

B

A

(b) The two Single Cross reference frames result-
ing in the overall Double Cross Calculus reference
frame

Fig. 2. The Single and Double Cross reference systems

Double Cross Calculus (DCC). The Double Cross calculus [6] can be seen
as an extension of the Single Cross calculus adding another perpendicular, this
time at A (see Fig. 2(b) (right)). It can also be interpreted as the combination of
two Single Cross relations, the first describing the position of C wrt. B as seen
from A and the second wrt. A as seen from B (cf. Fig. 2(b) (left)). The resulting
partition distinguishes 13 relations (7 linear and 6 planar) denoted by tuples
derived from the two underlying SCC reference frames and four special cases,
A = C)= B (4 a), A)= B = C (b 4), A = B)= C (dou), and A = B = C (tri),
resulting in 17 base relations overall. Fig. 2(b) depicts the relation A, B 5 3 C.

Coarse-grained Dipole Relation Algebra (DRAc). A dipole is an oriented
line segment, e.g. as determined by a start and an end point. We will write dAB

for a dipole defined by start point A and end point B. The idea of using dipoles
was first introduced by Schlieder [13] and extended in [14].

In the coarse-grained variant of the Dipole Calculus (DRAc) describes the
orientation relation between two dipoles dAB and dCD with the preliminary that
A, B, C, and D are in general position, i.e. no three disjoint points are collinear.
Each base relation is a 4-tuple (r1, r2, r3, r4) of FlipFlop relations relating a
point from one of the dipoles with the other dipole. r1 describes the relation
of C wrt. the dipole dAB, r2 of D wrt. dAB , r3 of A wrt. dCD, and r4 of B
wrt. dCD. The distinguished FlipFlop relations are left, right, start, and end (see
Fig. 1). Dipole relations are usually written without commas and parentheses,
e.g. rrll. Thus, the example in Fig. 3 shows the relation dAB rlll dCD. Since the
underlying points for a DRAc relation need to be in general position the ri can
only take the values left, right, start, or end resulting in 24 base relations.

Oriented Point Relation Algebra OPRAm. The OPRAm calculus [11]
operates on oriented points. An oriented point is a point in the plane with
an additional direction parameter. OPRAm relates two oriented points A and
B and describes their relative orientation towards each other. The granularity

46 J.O. Wallgrün et al.

A B

C
D

Fig. 3. A dipole configuration: dAB rlll dCD in the coarse-grained Dipole Relation
Algebra (DRAc)

factor m ∈ N determines the number of distinguished relations. For each of the
two oriented points, m lines are used to partition the plane into 2m planar and
2m linear regions. Fig. 4 shows the partitions for the cases m = 2 (Fig. 4(a)) and
m = 4 (Fig. 4(b)). The orientation of the two points is depicted by the arrows
starting at A and B, respectively. The regions are numbered from 0 to (4m−1).
Region 0 always coincides with the orientation of the point. An OPRAm relation
relOPRAm consist of pairs (i, j) where i is the number of the region of A which
contains B, while j is the number of the region of B that contains A. These
relations are usually written as A m∠j

i B with i, j ∈ Z4m
5. Thus, the examples in

Fig. 4 depict the relations A 2∠1
7 B and A 4∠3

13 B. Additional relations describe
situations in which both oriented points coincide. In these cases, the relation is
determined by the number s of the region of A into which the orientation arrow
of B falls (as illustrated in Fig. 4(c)). These relations are written as A 2∠s B
(A 2∠1 B in the example).

1

3

2

5

7

0 7
6

5
1

0

4

4
A

B

(a) with granularity m = 2:
A 2∠1

7 B

0

2
3

4

6
7 9 10

5

1

13

0 15 14
13

12
11

10
9

7

3

8

8

A B

(b) with granularity m = 4:
A 4∠3

13 B

A
B

0

1

2

3
4

5

6

7

(c) case where A and B co-
incide: A 2∠1 B

Fig. 4. Two oriented points related at different granularities

3 SparQ

SparQ consists of a set of modules that provide different services required for
QSR that will be explained below. These modules are glued together by a central
script that can either be used directly from the console or included into own
applications via TCP/IP streams in a server/client fashion (see Section 5). The
general architecture is visualized in Fig. 5.
5 Z4m defines a cyclic group with 4m elements.

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 47

compute−

constraint−

neighborhood−

qualify

relation

reasoning

reasoning

quantify

SparQ

sp
ec

ifi
ca

tio
ns

ca
lc

ul
i

CASL interface

Fig. 5. Module architecture of the SparQ toolbox

The general syntax for using the SparQ main script is as follows:

$./sparq <module> <calculus identifier> <module-specific parameters>

Example:

$./sparq compute-relation dra-24 complement "(lrll llrr)"

where ‘compute-relation’ is the name of the module to be utilized, in this case the
module for conducting operations on relations, ‘dra-24’ is the SparQ identifier
for the dipole calculus DRAc, and the rest are module-specific parameters, here
the name of the operation that should be conducted (‘complement’) and a string
parameter representing the disjunction of the two dipole base relations lrll and
llrr6. The example call thus computes the complement of the disjunction of these
two relations.

Some calculi have calculus-specific parameters, for example the granularity
parameter in OPRAm. These parameters are appended with a ‘-’ after the
calculus’ base identifier. opra-3 for example refers to OPRA3.

SparQ currently provides the following modules:

qualify transforms a quantitative geometric description of a spatial configu-
ration into a qualitative description based on one of the supported spatial
calculi

compute-relation applies the operations defined in the calculi specifications
(intersection, union, complement, converse, composition, etc.) to a set of
spatial relations

constraint-reasoning performs computations on constraint networks

Further modules are planned in future extensions. They comprise a quantifi-
cation module for turning qualitative scene descriptions back into quantitative
6 Disjunctions of base relations are always represented as a space-separated list of the

base relations enclosed in parentheses in SparQ.

48 J.O. Wallgrün et al.

geometric descriptions and a module for neighborhood-based spatial reasoning.
In the following section we will take a closer look at the three existing modules.

3.1 Scene Descriptions and Qualification

The purpose of the ‘qualify’ module is to turn a quantitative geometric scene
description into a qualitative scene description with respect to a particular cal-
culus. Calculi are specified via the calculus identifier that is passed with the
call to SparQ. Qualification is required for applications in which one wants to
perform qualitative computations over objects represented by their geometric
parameters.

A B
C

5

50
x

y

Fig. 6. An example configuration of three dipoles

The ‘qualify’ module reads a quantitative scene description and generates
a qualitative one. A quantitative scene description is a list of base object de-
scriptions (separated by spaces and enclosed in parentheses). Each base object
description is a tuple consisting of an object identifier and object parameters
that depend on the type of the object. For instance, let us say we are working
with dipoles, i.e. oriented line segments. The object description of a dipole has
the form ‘(name xs ys xe ye)’, where name is the identifier of this particular
dipole object and the rest are the coordinates of start and end point of the
dipole. Let us consider the example in Fig. 6 which shows three dipoles A, B,
and C. The quantitative scene description for this situation is:

((A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5))

The ‘qualify’ module has one module-specific parameter that needs to be speci-
fied:

mode: This parameter controls which relations are included into the qualitative
scene description: If ‘all’ is passed as parameter, the relations between each
pair of objects will be determined. If it is ‘first2all’ only the relations between
the first and all other objects are computed.

The resulting qualitative scene description is a list of relation tuples (again
separated by spaces and enclosed in parentheses). A relation tuple consists of the

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 49

object identifier of the relatum followed by a relation and the object identifier of
the referent, meaning that the first object stands in this particular relation with
the second object. The command to produce the qualitative scene description
followed by the result is7:

$./sparq qualify dra-24 all
$ ((A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5))
> ((A rllr B) (A rllr C) (B lrrl C))

If we had chosen ‘first2all’ as mode parameter the relation between B and C
would not have been included in the qualitative scene description.

3.2 Computing with Relations

The ‘compute-relation’ module realizes computations with the operations defined
in the calculus specification. The module-specific parameters are the operation
that should be conducted and one or more input relations depending on the arity
of the operation. Assume we want to compute the converse of the dipole relation
llrl. The corresponding call to SparQ and the result are:

$./sparq compute-relation dra-24 converse llrl
> (rlll)

The result is always a list of relations as operations often yield a disjunction
of base relations. In the example above, the list contains a single relation. The
composition of two relations requires one more relation as parameter because it
is a binary operation, e.g.:

$./sparq compute-relation dra-24 composition llrr rllr
> (lrrr llrr rlrr slsr lllr rllr rlll ells llll lrll)

Here the result is a disjunction of 10 base relations. It is also possible to have
disjunctions of base relations as input parameters. For instance, the following
call computes the intersection of two disjunctions:

$./sparq compute-relation dra-24 intersection "(rrrr rrll rllr)"
"(llll rrll)"

> (rrll)

3.3 Constraint Reasoning

The ‘constraint-reasoning’ module reads a description of a constraint network;
this is a qualitative scene description that may include disjunctions and may be
inconsistent and/or underspecified. It performs a particular kind of consistency
check8. Which type of consistency check is executed depends on the first module
specific parameter:
7 In all the examples, input lines start with ‘$’. Output of SparQ is marked with ‘>’.
8 The ‘constraint-reasoning’ module also provides some basic actions to manipulate

constraint networks that are not further explained in this text. One example is the
‘merge’ operation that is used in the example in Section 5 (see the SparQ manual
for details [30]).

50 J.O. Wallgrün et al.

action: The two consistency checks currently provided are ‘path-consistency’
and ‘scenario-consistency’; the parameter determines which kind of consis-
tency check is performed.

The action ‘path-consistency’ causes the module to enforce path-consistency on
the constraint network using van Beek’s algorithm [26] or to detect an inconsis-
tency of the network in the process. In case of a ternary calculus the canonical
extension of van Beek’s algorithm described in [31] is used. For instance, we could
check if the scene description generated by the ‘qualify’ module in Section 3.1
is path-consistent—which of course it is. To make the test slightly more interest-
ing we add the base relation ells to the constraint between A and C; this results
in a constraint network that is not path-consistent:

$./sparq constraint-reasoning dra-24 path-consistency
$ ((A rllr B) (A (ells rllr) C) (B lrrl C))
> Modified network.
> ((B (lrrl) C) (A (rllr) C) (A (rllr) B))

The result is a path-consistent constraint network in which ells has been re-
moved. The output ‘Modified network’ indicates that the original network was
not path-consistent and had to be changed. Otherwise, the result would have
started with ‘Unmodified network’. In the next example we remove the relation
rllr from the disjunction. This results in a constraint network that cannot be
made path-consistent; this implies that it is not consistent.

$./sparq constraint-reasoning dra-24 path-consistency
$ ((A rllr B) (A ells C) (B lrrl C))
> Not consistent.
> ((B (lrrl) C) (A () C) (A (rllr) B))

SparQ correctly determines that the network is inconsistent and returns the
constraint network in the state in which the inconsistency showed up (indicated
by the empty relation () between A and C).

In a last path-consistency example we use the ternary Double Cross Calculus:

$./sparq constraint-reasoning dcc path-consistency
$ ((A B (7_3 6_3) C) (B C (7_3 6_3 5_3) D) (A B (3_6 3_7) D))
> Not consistent.
> ((A B () D) (A B (6_3 7_3) C) (B C (5_3 6_3 7_3) D) (D C (3_7) A))

If ‘scenario-consistency’ is provided as argument, the ‘constraint-reasoning’
module checks if a path-consistent scenario exists for the given network. It uses
a backtracking algorithm to generate all possible scenarios and checks them
for path-consistency as described above. A second module-specific parameter
determines what is returned as the result of the search:

return: This parameter determines what is to be returned in case of a constraint
network for which path-consistent scenarios can be found. ‘First’ returns the
first path-consistent scenario, ‘all’ returns all path-consistent scenarios, and
‘interactive’ returns one solution and allows to ask for the next solution until
all solutions have been generated.

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 51

Path-consistency is also used as a forward-checking method during the search
to make the search more efficient. For certain calculi, the existence of a path-
consistent scenario implies consistency. However, this again has to be investi-
gated for each calculus (cmp. Section 2.3). In the following example, we use
‘first’ as additional parameter so that only the first solution is returned:

$./sparq constraint-reasoning dra-24 scenario-consistency first
$ ((A rele C) (A ells B) (C errs B) (D srsl C) (A rser D) (D rrrl B))
> ((B (rlrr) D) (C (slsr) D) (C (errs) B) (A (rser) D) (A (ells) B)
(A (rele) C))

In case of an inconsistent constraint network, SparQ returns ‘Not consistent.’. As
a future extension, we plan to allow specification of splitting subsets of a calculus
for which path-consistency implies consistency. A splitting subset S will be used
in a variant of the backtracking algorithm to decide consistency by searching for
path-consistent instantiations that only contain relations from S.

4 Specifying Calculi in SparQ

For most calculi inclusion into SparQ should be straightforward. The main action
to be taken is to provide the calculus specification. This is done in a Lisp-like
syntax. Listing 1.1 shows an extract of the definition of a simple exemplary
calculus for reasoning about distances between three point objects distinguishing
the three relations ‘closer’, ‘farther’, and ‘same’.

(def-calculus " Relative distance calculus (reldistcalculus)"
:arity :ternary
:base-relations (same closer farther)
:identity-relation same

:inverse-operation ((same same)
(closer closer)
(farther farther))

:shortcut-operation ((same same)
(closer farther)
(farther closer))

:composition-operation ((same same (same closer farther))
(same closer (same closer farther))
(same farther (same closer farther))
(closer same (same closer farther))
(closer closer (same closer farther))
[...]

Listing 1.1. Specification of a simple ternary calculus for reasoning about distances

The arity of the calculus, the base relations, the identity relation, and the
different operations have to be specified, using lists enclosed in parentheses (e.g.
when an operation returns a disjunction of base relations). In this example, the
inverse operation applied to ‘same’ yields ‘same’, and composing ‘closer’ and
‘same’ results in the universal relation written as the disjunction of all base
relations. As mentioned in Section 2.2, not all operations are required because
some operations are combinations of other operations.

52 J.O. Wallgrün et al.

In addition to the calculus specification, it is necessary to provide the imple-
mentation of a qualifier function which for an n-ary calculus takes n geometric
objects of the corresponding base type as input and returns the relation hold-
ing between these objects. The qualifier function encapsulates the methods for
computing the qualitative relations from quantitative geometric descriptions. If
it is not provided, the ‘qualify’ module will not work for this calculus.

For some calculi, it is not possible to provide operations in form of simple ta-
bles as in the example. For instance, OPRAm has an additional parameter that
specifies the granularity of the calculus and influences the number of base rela-
tions. Thus, the operations can only be provided in procedural form; this means
the result of the operations are computed from the input relations when they are
required. For these cases, SparQ allows providing the operations as implemented
functions and uses a caching mechanism to store often required results.

5 Integrating SparQ into Own Applications

SparQ can also run in server mode which makes it easy to integrate it into appli-
cations. We have chosen a client/server approach as it allows for straightforward
integration independently of the programming language used for implementing
the application.

When run in server mode, SparQ takes TCP/IP connections and interacts
with the client via simple plain-text line-based communication. This means the
client sends commands which consist of everything following the ‘./sparq’ in the
examples in this text and can then read the results from the TCP/IP stream.

connect to sparq server on localhost , port 4443
sock = socket.socket(socket.AF_INET , socket. SOCK_STREAM)
sock.connect ((’localhost’, 4443))
sockfile = sock.makefile (’r’)

qualify a geometrical scenario with DRA -24
sock.send(’qualify dra -24 first2all ’)
sock.send(’((A 4 6 9 0.5) (B -5 5 0 2) (C -4 5 6 0))’)
scene = readline () # read the answer
print scene

add an additional relation (B eses C)
sock.send("constraint -reasoning dra -24 merge")
sock.send(scene + ’(B eses C)’)
scene2 = readline () # read the answer
print scene2

check the new scenario for consistency
sock.send(’constraint -reasoning dra -24 path -consistency’)
sock.send(scene2)
print readline () # print the answer
print readline () # print the resulting constraint network

Listing 1.2. Integrating SparQ into own applications: an example in Python

SparQ is started in server mode by providing the command line option
--interactive (-i), optionally followed by --port (-p) to specify the port.
$./sparq --interactive --port 4443

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 53

If no port is given, SparQ interacts with standard-input and standard-output,
i.e., it can be used interactively from the shell.

An example is given in Listing 1.2 which shows a small Python program that
opens a connection to the server and performs some simple computations (quali-
fication, adding another relation, checking for path-consistency). It produces the
following output:

> ((A rrll B) (A rrll C))
> ((A rrll B) (A rrll C) (B eses C))
> Not consistent.
> ((B (eses) C) (A () C) (A (rrll) B))

6 A Case Study: Using SparQ for the Indian Tent
Problem

In this section we want to demonstrate the application of SparQ to a problem
that can be seen as a kind of benchmark in QSR, the so-called Indian Tent
Problem.

6.1 Indian Tent Definition

The Indian Tent Problem was first discussed by Röhrig [22]. It describes a very
simple configuration of points in the plane that is not consistent and can be used
to compare spatial reasoning formalisms with respect to their ability to detect
this inconsistency.

The Indian Tent consists of a clockwise oriented triangle .ABC and an ad-
ditional point D (see Fig. 7). The following facts are given: “C is right of AB”,
“D is left of AB” and “D is right of CB”. From these facts follows geometrically
that “D is right of CA”. Thus, adding the (obviously wrong) fact “D is left of
CA” results in an inconsistency.

In the following, we will show how to use SparQ to compare the properties
of different calculi. We will model the Indian Tent Problem with three calculi
(FFC, DCC and DRAc) and demonstrate how the constraint-based reasoning
abilities of SparQ can be used to gain insights about how well local consistencies
like path-consistency or scenario-consistency approximate consistency.

A C

B
D

Fig. 7. The Indian Tent Problem

54 J.O. Wallgrün et al.

B

CA

D
(A B l D)
(A B r C)
(C B r D)
(C A r D)

B

CA

D
(A B (1 5 2 5 3 5 3 6 3 7) D)
(A B (5 1 5 2 5 3 6 3 7 3) C)
(C B (5 1 5 2 5 3 6 3 7 3) D)
(C A (5 1 5 2 5 3 6 3 7 3) D)

CA

B

D (AB rele CB)
(AB ells BD)
(CB errs BD)
(CA srsl CB)
(AB rser CA)
(CA rr?? BD)

Fig. 8. The Indian Tent problem modeled with the FlipFlop calculus, the Double Cross
Calculus and DRAc. The relation printed in italics refers to the relation depicted by the
gray region in the pictures. The ‘?’ is a wildcard in SparQ which stands for an arbitrary
valid symbol at this place, i.e., it denotes the disjunction of all possible relations.

6.2 Applying SparQ to the Indian Tent Problem

Fig. 8 shows consistent models of the Indian Tent Problem with FFC, DCC, and
DRAc. For further use, we assume the models to be stored in simple text files
with the labels ‘FFC consistent’, ‘DCC consistent’, and ‘DRA consistent’. We
first want to check if we can enforce path-consistency on those models:

$./sparq constraint-reasoning ffc path-consistency < FFC_consistent
> Unmodified network.
> ((A B (l) D) (A B (r) C) (C A (r) D) (C B (r) D))

$./sparq constraint-reasoning dcc path-consistency < DCC_consistent
> Unmodified network.
> ((A B (1_5 2_5 3_5 3_6 3_7) D) (A B (5_1 5_2 5_3 6_3 7_3) C)

(C A (5_1 5_2 5_3 6_3 7_3) D) (C B (5_1 5_2 5_3 6_3 7_3) D))

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 55

$./sparq constraint-reasoning dra-24 path-consistency < DRA_consistent
> Modified network.
> ((BD (rlrr) CA) (CB (slsr) CA) (CB (errs) BD) (AB (rser) CA)

(AB (ells) BD) (AB (rele) CB))

Not surprisingly, SparQ can enforce path-consistency on all three models. Now
we replace each last relation specified in Fig. 8 indicating that D is right of CA
by the opposite relations ‘(C A (l) D)’, ‘(C A (1 5 2 5 3 5 3 6 3 7) D)’, and
‘(CA rl?? BD)’, respectively. Thus, we create obviously inconsistent configura-
tions which we assume to be stored in the files ‘FFC inconsistent’, ‘DCC incon-
sistent’, and ‘DRA inconsistent’. Now these are checked for path-consistency:

$./sparq constraint-reasoning ffc path-consistency < FFC_inconsistent
> Unmodified network.
> ((A B (l) D) (A B (r) C) (C A (l) D) (C B (r) D))

$./sparq constraint-reasoning dcc path-consistency < DCC_inconsistent
> Unmodified network.
> ((A B (1_5 2_5 3_5 3_6 3_7) D) (A B (5_1 5_2 5_3 6_3 7_3) C)

(C A (1_5 2_5 3_5 3_6 3_7) D) (C B (5_1 5_2 5_3 6_3 7_3) D))

$./sparq constraint-reasoning dra-24 path-consistency < DRA_inconsistent
> Not consistent.
> ((BD()CA) (CB (slsr) CA) (CB (errs) BD) (AB (rser) CA) (AB (ells) BD)

(AB (rele) CB))

The DRAc model is found to be inconsistent. For FFC and DCC, however,
SparQ shows that path-consistency can be enforced for the inconsistent models.
For DCC this confirms the results of Röhrig [32]. So we also check the FFC and
DCC models for scenario-consistency:

$./sparq constraint-reasoning ffc scenario-consistency first
< FFC_inconsistent

> ((A B (l) D) (A B (r) C) (C A (l) D) (C B (r) D))

$./sparq constraint-reasoning dcc scenario-consistency first
< DCC_inconsistent

> Not consistent.

This result shows that at least for this simple configuration scenario-consistency
is sufficient to detect the inconsistency for DCC, while for FFC it is still not suf-
ficient. As this example illustrates, SparQ can be a useful tool for experimentally
comparing spatial calculi.

7 Conclusion and Outlook

The SparQ toolbox presented in this text is a first step towards making QSR
techniques and spatial calculi accessible to a broader range of application de-
velopers. We hope that this initiative will catch interest in the QSR community

56 J.O. Wallgrün et al.

and will encourage researchers from other groups to incorporate their calculi into
SparQ.

Besides including more calculi, extensions currently planned for SparQ are
a module for neighborhood-based reasoning techniques [33,15] (e.g. for relax-
ing inconsistent constraint networks based on conceptual neighborhoods and for
qualitative planning) and a module that allows quantification (turning a con-
sistent qualitative scene description back into a geometric representation). This
requires the mediation between the algebraic and geometric aspects of a spatial
calculus together with the utilization of prototypes. Moreover, we want to in-
clude geometric reasoning techniques based on Gröbner bases as a service for
calculus developers as these can be helpful, for instance, to derive composition
tables [14]. The optimization of the algorithms included in SparQ is another
issue that we want to pay more attention to in the future. Finally, we intend to
incorporate interfaces that allow to exchange calculus specifications with other
QSR frameworks (e.g. [21]).

Acknowledgements

The authors would like to thank three anonymous reviewers for valuable com-
ments and suggestions. This research was carried out at the SFB/TR 8 Spatial
Cognition supported by the German Research Foundation (DFG).

References

1. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An
overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM, 832–843 (1983)

3. Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection.
In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation
and Reasoning: Proceedings of the Third International Conference (KR 1992), pp.
165–176. Morgan Kaufmann, San Francisco (1992)

4. Egenhofer, M.J.: A formal definition of binary topological relationships. In: 3rd
International Conference on Foundations of Data Organization and Algorithms,
pp. 457–472. Springer, Heidelberg (1989)

5. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal
tractable fragment of the region connection calculus. Artificial Intelligence 108(1-
2), 69–123 (1999)

6. Freksa, C.: Using orientation information for qualitative spatial reasoning. In:
Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and methods of spatio-
temporal reasoning in geographic space, pp. 162–178. Springer, Heidelberg (1992)

7. Frank, A.: Qualitative spatial reasoning about cardinal directions. In: Proceedings
of the American Congress on Surveying and Mapping ACSM-ASPRS, Baltimore,
Maryland, USA, pp. 148–167 (1991)

8. Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and
Computing 9, 23–44 (1998)

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox 57

9. Ligozat, G.: Qualitative triangulation for spatial reasoning. In: Campari, I., Frank,
A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 54–68. Springer, Heidelberg (1993)

10. Moratz, R., Nebel, B., Freksa, C.: Qualitative spatial reasoning about relative
position: The tradeoff between strong formal properties and successful reasoning
about route graphs. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.)
Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 385–400. Springer, Heidelberg
(2003)

11. Moratz, R., Dylla, F., Frommberger, L.: A relative orientation algebra with ad-
justable granularity. In: Proceedings of the Workshop on Agents in Real-Time and
Dynamic Environments (IJCAI 2005) (2005)

12. Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. [34]
13. Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT

1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)
14. Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments.

In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial
Intelligence (ECAI), IOS Press, Berlin, Germany (2000)

15. Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation
calculus. [35], pp. 304–322

16. Billen, R., Clementini, E.: A model for ternary projective relations between re-
gions. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp.
310–328. Springer, Heidelberg (2004)

17. Goyal, R.K., Egenhofer, M.J.: Consistent queries over cardinal directions across
different levels of detail. In: Tjoa, A.M., Wagner, R., Al-Zobaidie, A. (eds.) Pro-
ceedings of the 11th International Workshop on Database and Expert System Ap-
plications, Greenwich, pp. 867–880. IEEE Computer Society Press, Los Alamitos
(2000)

18. Sharma, J.: Integrated Spatial Reasoning in Geographic Information Systems:
Combining Topology and Direction. PhD thesis, University of Maine (1996)

19. Gerevini, A., Renz, J.: Combining topological and size information for spatial rea-
soning. Artificial Intelligence 137, 1–42 (2002)

20. Condotta, J.F., Ligozat, G., Saade, M.: A generic toolkit for n-ary qualitative
temporal and spatial calculi. In: Proceedings of the 13th International Symposium
on Temporal Representation and Reasoning (TIME 2006), Budapest, Hungary
(2006)

21. Wölfl, S., Mossakowski, T.: CASL specifications of qualitative calculi. In: Cohn,
A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, Springer, Heidelberg (2005)

22. Röhrig, R.: Representation and processing of qualitative orientation knowledge. In:
Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997: Advances in Artificial Intelligence.
LNCS, vol. 1303, pp. 219–230. Springer, Heidelberg (1997)

23. Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, dis-
tance, and path knowledge. Applied Intelligence 6, 49–58 (1996)

24. Scivos, A., Nebel, B.: Double-crossing: Decidability and computational complexity
of a qualitative calculus for navigation. In: Montello, D.R. (ed.) COSIT 2001.
LNCS, vol. 2205, Springer, Heidelberg (2001)

25. Ladkin, P., Reinefeld, A.: Effective solution of qualitative constraint problems.
Artificial Intelligence 57, 105–124 (1992)

26. van Beek, P.: Reasoning about qualitative temporal information. Artificial Intelli-
gence 58(1-3), 297–321 (1992)

58 J.O. Wallgrün et al.

27. Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal rea-
soning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer,
Heidelberg (2005)

28. Ligozat, G., Renz, J.: What is a qualitative calculus? A general framework [34]
29. Scivos, A., Nebel, B.: The finest of its class: The practical natural point-based

ternary calculus LR for qualitative spatial reasoning [35], pp. 283–303
30. Wallgrün, J.O., Frommberger, L., Dylla, F., Wolter, D.: SparQ user manual v0.6.

Technical Report 007-07/2006, SFB/TR 8 Spatial Cognition; Universität Bremen
(2006)

31. Dylla, F., Moratz, R.: Empirical complexity issues of practical qualitative spatial
reasoning about relative position. In: Workshop on Spatial and Temporal Reason-
ing at ECAI 2004, Valencia, Spain (2004)

32. Röhrig, R.: Repräsentation und Verarbeitung von qualitativem Orientierungswis-
sen. PhD thesis, University of Hamburg (1998)

33. Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelli-
gence 1(54), 199–227 (1992)

34. Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.): PRICAI 2004. LNCS (LNAI),
vol. 3157. Springer, Heidelberg (2004)

35. Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.): Spatial
Cognition IV. LNCS (LNAI), vol. 3343. Springer, Heidelberg (2005)

